Timezone: »
Deep learning for graph matching (GM) has emerged as an important research topic due to its superior performance over traditional methods and insights it provides for solving other combinatorial problems on graph. While recent deep methods for GM extensively investigated effective node/edge feature learning or downstream GM solvers given such learned features, there is little existing work questioning if the fixed connectivity/topology typically constructed using heuristics (e.g., Delaunay or k-nearest) is indeed suitable for GM. From a learning perspective, we argue that the fixed topology may restrict the model capacity and thus potentially hinder the performance. To address this, we propose to learn the (distribution of) latent topology, which can better support the downstream GM task. We devise two latent graph generation procedures, one deterministic and one generative. Particularly, the generative procedure emphasizes the across-graph consistency and thus can be viewed as a matching-guided co-generative model. Our methods deliver superior performance over previous state-of-the-arts on public benchmarks, hence supporting our hypothesis.
Author Information
Tianshu Yu (Arizona State University)
Runzhong Wang (Shanghai Jiao Tong University)
Junchi Yan (Shanghai Jiao Tong University)
baoxin Li (Arizona State University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Deep Latent Graph Matching »
Thu. Jul 22nd 02:00 -- 02:05 AM Room
More from the Same Authors
-
2023 Poster: Towards Quantum Machine Learning for Constrained Combinatorial Optimization: a Quantum QAP Solver »
Xinyu Ye · Ge Yan · Junchi Yan -
2023 Poster: Patch-level Contrastive Learning via Positional Query for Visual Pre-training »
Shaofeng Zhang · Qiang Zhou · Zhibin Wang · Fan Wang · Junchi Yan -
2023 Poster: Quantum 3D Graph Learning with Applications to Molecule Embedding »
Ge Yan · Huaijin Wu · Junchi Yan -
2023 Poster: QAS-Bench: Rethinking Quantum Architecture Search and A Benchmark »
Xudong Lu · Kaisen Pan · Ge Yan · Jiaming Shan · Wenjie Wu · Junchi Yan -
2023 Poster: Understanding and Generalizing Contrastive Learning from the Inverse Optimal Transport Perspective »
Liangliang Shi · Gu Zhang · Haoyu Zhen · Jintao Fan · Junchi Yan -
2023 Poster: LinSATNet: The Positive Linear Satisfiability Neural Networks »
Runzhong Wang · Yunhao Zhang · Ziao Guo · Tianyi Chen · Xiaokang Yang · Junchi Yan -
2023 Poster: QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms »
Wenjie Wu · Ge Yan · Xudong Lu · Kaisen Pan · Junchi Yan -
2022 Poster: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2022 Poster: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Poster: GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed Graph Neural Networks »
Yixuan He · Quan Gan · David Wipf · Gesine Reinert · Junchi Yan · Mihai Cucuringu -
2022 Spotlight: GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed Graph Neural Networks »
Yixuan He · Quan Gan · David Wipf · Gesine Reinert · Junchi Yan · Mihai Cucuringu -
2022 Spotlight: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2021 Poster: Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach »
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha -
2021 Poster: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Spotlight: Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach »
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha -
2021 Spotlight: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Poster: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian -
2021 Spotlight: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian