Timezone: »
We present a new certification method for image and point cloud segmentation based on randomized smoothing. The method leverages a novel scalable algorithm for prediction and certification that correctly accounts for multiple testing, necessary for ensuring statistical guarantees. The key to our approach is reliance on established multiple-testing correction mechanisms as well as the ability to abstain from classifying single pixels or points while still robustly segmenting the overall input. Our experimental evaluation on synthetic data and challenging datasets, such as Pascal Context, Cityscapes, and ShapeNet, shows that our algorithm can achieve, for the first time, competitive accuracy and certification guarantees on real-world segmentation tasks. We provide an implementation at https://github.com/eth-sri/segmentation-smoothing.
Author Information
Marc Fischer (ETH Zurich)
Maximilian Baader (ETH Zürich)
Martin Vechev (ETH Zurich)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Scalable Certified Segmentation via Randomized Smoothing »
Thu. Jul 22nd 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2021 : Automated Discovery of Adaptive Attacks on Adversarial Defenses »
Chengyuan Yao · Pavol Bielik · Petar Tsankov · Martin Vechev -
2022 Workshop: Workshop on Formal Verification of Machine Learning »
Huan Zhang · Leslie Rice · Kaidi Xu · aditi raghunathan · Wan-Yi Lin · Cho-Jui Hsieh · Clark Barrett · Martin Vechev · Zico Kolter -
2022 Poster: On Distribution Shift in Learning-based Bug Detectors »
Jingxuan He · Luca Beurer-Kellner · Martin Vechev -
2022 Spotlight: On Distribution Shift in Learning-based Bug Detectors »
Jingxuan He · Luca Beurer-Kellner · Martin Vechev -
2021 Poster: TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer »
Berkay Berabi · Jingxuan He · Veselin Raychev · Martin Vechev -
2021 Spotlight: TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer »
Berkay Berabi · Jingxuan He · Veselin Raychev · Martin Vechev -
2021 Poster: PODS: Policy Optimization via Differentiable Simulation »
Miguel Angel Zamora Mora · Momchil Peychev · Sehoon Ha · Martin Vechev · Stelian Coros -
2021 Spotlight: PODS: Policy Optimization via Differentiable Simulation »
Miguel Angel Zamora Mora · Momchil Peychev · Sehoon Ha · Martin Vechev · Stelian Coros -
2020 Poster: Adversarial Robustness for Code »
Pavol Bielik · Martin Vechev -
2020 Poster: Adversarial Attacks on Probabilistic Autoregressive Forecasting Models »
Raphaël Dang-Nhu · Gagandeep Singh · Pavol Bielik · Martin Vechev -
2019 Poster: DL2: Training and Querying Neural Networks with Logic »
Marc Fischer · Mislav Balunovic · Dana Drachsler-Cohen · Timon Gehr · Ce Zhang · Martin Vechev -
2019 Oral: DL2: Training and Querying Neural Networks with Logic »
Marc Fischer · Mislav Balunovic · Dana Drachsler-Cohen · Timon Gehr · Ce Zhang · Martin Vechev -
2018 Poster: Training Neural Machines with Trace-Based Supervision »
Matthew Mirman · Dimitar Dimitrov · Pavle Djordjevic · Timon Gehr · Martin Vechev -
2018 Oral: Training Neural Machines with Trace-Based Supervision »
Matthew Mirman · Dimitar Dimitrov · Pavle Djordjevic · Timon Gehr · Martin Vechev -
2018 Poster: Differentiable Abstract Interpretation for Provably Robust Neural Networks »
Matthew Mirman · Timon Gehr · Martin Vechev -
2018 Oral: Differentiable Abstract Interpretation for Provably Robust Neural Networks »
Matthew Mirman · Timon Gehr · Martin Vechev