Timezone: »
Kernel ridge regression is well-known to achieve minimax optimal rates in low-dimensional settings. However, its behavior in high dimensions is much less understood. Recent work establishes consistency for high-dimensional kernel regression for a number of specific assumptions on the data distribution. In this paper, we show that in high dimensions, the rotational invariance property of commonly studied kernels (such as RBF, inner product kernels and fully-connected NTK of any depth) leads to inconsistent estimation unless the ground truth is a low-degree polynomial. Our lower bound on the generalization error holds for a wide range of distributions and kernels with different eigenvalue decays. This lower bound suggests that consistency results for kernel ridge regression in high dimensions generally require a more refined analysis that depends on the structure of the kernel beyond its eigenvalue decay.
Author Information
Konstantin Donhauser (ETH Zürich)
Mingqi Wu (ETH Zurich)
Fanny Yang (ETH Zurich)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: How rotational invariance of common kernels prevents generalization in high dimensions »
Fri. Jul 23rd 03:50 -- 03:55 AM Room
More from the Same Authors
-
2021 : Maximizing the robust margin provably overfits on noiseless data »
Fanny Yang · Reinhard Heckel · Michael Aerni · Alexandru Tifrea · Konstantin Donhauser -
2021 : Surprising benefits of ridge regularization for noiseless regression »
Konstantin Donhauser · Alexandru Tifrea · Michael Aerni · Reinhard Heckel · Fanny Yang -
2021 : Novel disease detection using ensembles with regularized disagreement »
Alexandru Tifrea · Eric Stavarache · Fanny Yang -
2022 : Why adversarial training can hurt robust accuracy »
jacob clarysse · Julia Hörrmann · Fanny Yang -
2022 : Provable Concept Learning for Interpretable Predictions Using Variational Autoencoders »
Armeen Taeb · Nicolò Ruggeri · Carina Schnuck · Fanny Yang -
2022 Poster: Fast rates for noisy interpolation require rethinking the effect of inductive bias »
Konstantin Donhauser · Nicolò Ruggeri · Stefan Stojanovic · Fanny Yang -
2022 Spotlight: Fast rates for noisy interpolation require rethinking the effect of inductive bias »
Konstantin Donhauser · Nicolò Ruggeri · Stefan Stojanovic · Fanny Yang -
2020 : QA for invited talk 3 Yang »
Fanny Yang -
2020 : Invited talk 3 Yang »
Fanny Yang -
2020 Poster: Understanding and Mitigating the Tradeoff between Robustness and Accuracy »
Aditi Raghunathan · Sang Michael Xie · Fanny Yang · John Duchi · Percy Liang