Timezone: »
Recommendation models can effectively estimate underlying user interests and predict one's future behaviors by factorizing an observed user-item rating matrix into products of two sets of latent factors. However, the user-specific embedding factors can only be learned in a transductive way, making it difficult to handle new users on-the-fly. In this paper, we propose an inductive collaborative filtering framework that contains two representation models. The first model follows conventional matrix factorization which factorizes a group of key users' rating matrix to obtain meta latents. The second model resorts to attention-based structure learning that estimates hidden relations from query to key users and learns to leverage meta latents to inductively compute embeddings for query users via neural message passing. Our model enables inductive representation learning for users and meanwhile guarantees equivalent representation capacity as matrix factorization. Experiments demonstrate that our model achieves promising results for recommendation on few-shot users with limited training ratings and new unseen users which are commonly encountered in open-world recommender systems.
Author Information
Qitian Wu (Shanghai Jiao Tong University)
Hengrui Zhang (University of Illinois at Chicago)
Xiaofeng Gao (Shanghai Jiaotong University)
Junchi Yan (Shanghai Jiao Tong University)
Hongyuan Zha (Shenzhen Institute of Artificial Intelligence and Robotics for Society; The Chinese University of Hong Kong, Shenzhen)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach »
Fri. Jul 23rd 03:40 -- 03:45 AM Room
More from the Same Authors
-
2023 Poster: Towards Quantum Machine Learning for Constrained Combinatorial Optimization: a Quantum QAP Solver »
Xinyu Ye · Ge Yan · Junchi Yan -
2023 Poster: Hierarchical Diffusion for Offline Decision Making »
Wenhao Li · Xiangfeng Wang · Bo Jin · Hongyuan Zha -
2023 Poster: Patch-level Contrastive Learning via Positional Query for Visual Pre-training »
Shaofeng Zhang · Qiang Zhou · Zhibin Wang · Fan Wang · Junchi Yan -
2023 Poster: Quantum 3D Graph Learning with Applications to Molecule Embedding »
Ge Yan · Huaijin Wu · Junchi Yan -
2023 Poster: SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process »
Zichong Li · Yanbo Xu · Simiao Zuo · Haoming Jiang · Chao Zhang · Tuo Zhao · Hongyuan Zha -
2023 Poster: QAS-Bench: Rethinking Quantum Architecture Search and A Benchmark »
Xudong Lu · Kaisen Pan · Ge Yan · Jiaming Shan · Wenjie Wu · Junchi Yan -
2023 Poster: Understanding and Generalizing Contrastive Learning from the Inverse Optimal Transport Perspective »
Liangliang Shi · Gu Zhang · Haoyu Zhen · Jintao Fan · Junchi Yan -
2023 Poster: LinSATNet: The Positive Linear Satisfiability Neural Networks »
Runzhong Wang · Yunhao Zhang · Ziao Guo · Tianyi Chen · Xiaokang Yang · Junchi Yan -
2023 Poster: QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms »
Wenjie Wu · Ge Yan · Xudong Lu · Kaisen Pan · Junchi Yan -
2022 Poster: Hessian-Free High-Resolution Nesterov Acceleration For Sampling »
Ruilin Li · Hongyuan Zha · Molei Tao -
2022 Poster: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2022 Poster: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Poster: GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed Graph Neural Networks »
Yixuan He · Quan Gan · David Wipf · Gesine Reinert · Junchi Yan · Mihai Cucuringu -
2022 Spotlight: Hessian-Free High-Resolution Nesterov Acceleration For Sampling »
Ruilin Li · Hongyuan Zha · Molei Tao -
2022 Spotlight: GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed Graph Neural Networks »
Yixuan He · Quan Gan · David Wipf · Gesine Reinert · Junchi Yan · Mihai Cucuringu -
2022 Spotlight: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2021 Poster: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Spotlight: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Poster: Deep Latent Graph Matching »
Tianshu Yu · Runzhong Wang · Junchi Yan · baoxin Li -
2021 Spotlight: Deep Latent Graph Matching »
Tianshu Yu · Runzhong Wang · Junchi Yan · baoxin Li -
2021 Poster: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian -
2021 Spotlight: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian