Timezone: »
An effective approach in meta-learning is to utilize multiple train tasks'' to learn a good initialization for model parameters that can help solve unseen
test tasks'' with very few samples by fine-tuning from this initialization. Although successful in practice, theoretical understanding of such methods is limited. This work studies an important aspect of these methods: splitting the data from each task into train (support) and validation (query) sets during meta-training. Inspired by recent work (Raghu et al., 2020), we view such meta-learning methods through the lens of representation learning and argue that the train-validation split encourages the learned representation to be {\em low-rank} without compromising on expressivity, as opposed to the non-splitting variant that encourages high-rank representations. Since sample efficiency benefits from low-rankness, the splitting strategy will require very few samples to solve unseen test tasks. We present theoretical results that formalize this idea for linear representation learning on a subspace meta-learning instance, and experimentally verify this practical benefit of splitting in simulations and on standard meta-learning benchmarks.
Author Information
Nikunj Umesh Saunshi (Princeton University)
Arushi Gupta (Princeton University)
Wei Hu (Princeton University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: A Representation Learning Perspective on the Importance of Train-Validation Splitting in Meta-Learning »
Fri. Jul 23rd 02:25 -- 02:30 AM Room
More from the Same Authors
-
2022 Poster: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2022 Poster: More Than a Toy: Random Matrix Models Predict How Real-World Neural Representations Generalize »
Alexander Wei · Wei Hu · Jacob Steinhardt -
2022 Spotlight: More Than a Toy: Random Matrix Models Predict How Real-World Neural Representations Generalize »
Alexander Wei · Wei Hu · Jacob Steinhardt -
2022 Spotlight: Understanding Contrastive Learning Requires Incorporating Inductive Biases »
Nikunj Umesh Saunshi · Jordan Ash · Surbhi Goel · Dipendra Kumar Misra · Cyril Zhang · Sanjeev Arora · Sham Kakade · Akshay Krishnamurthy -
2021 Poster: Near-Optimal Linear Regression under Distribution Shift »
Qi Lei · Wei Hu · Jason Lee -
2021 Spotlight: Near-Optimal Linear Regression under Distribution Shift »
Qi Lei · Wei Hu · Jason Lee -
2020 Poster: Provable Representation Learning for Imitation Learning via Bi-level Optimization »
Sanjeev Arora · Simon Du · Sham Kakade · Yuping Luo · Nikunj Umesh Saunshi -
2020 Poster: A Sample Complexity Separation between Non-Convex and Convex Meta-Learning »
Nikunj Umesh Saunshi · Yi Zhang · Mikhail Khodak · Sanjeev Arora -
2019 Poster: Width Provably Matters in Optimization for Deep Linear Neural Networks »
Simon Du · Wei Hu -
2019 Poster: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Oral: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Oral: Width Provably Matters in Optimization for Deep Linear Neural Networks »
Simon Du · Wei Hu -
2019 Poster: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang -
2019 Oral: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang