Timezone: »
Knowledge transferability, or transfer learning, has been widely adopted to allow a pre-trained model in the source domain to be effectively adapted to downstream tasks in the target domain. It is thus important to explore and understand the factors affecting knowledge transferability. In this paper, as the first work, we analyze and demonstrate the connections between knowledge transferability and another important phenomenon--adversarial transferability, \emph{i.e.}, adversarial examples generated against one model can be transferred to attack other models. Our theoretical studies show that adversarial transferability indicates knowledge transferability, and vice versa. Moreover, based on the theoretical insights, we propose two practical adversarial transferability metrics to characterize this process, serving as bidirectional indicators between adversarial and knowledge transferability. We conduct extensive experiments for different scenarios on diverse datasets, showing a positive correlation between adversarial transferability and knowledge transferability. Our findings will shed light on future research about effective knowledge transfer learning and adversarial transferability analyses.
Author Information
Kaizhao Liang (University of Illinois, Urbana Champaign)
Class 2020 CS@UIUC, ML engineer@ SambaNova starting this July.
Yibo Zhang (University of Illinois at Urbana-Champaign)
Boxin Wang (University of Illinois at Urbana-Champaign)
Zhuolin Yang (University of Illinois at Urbana-Champaign)
Sanmi Koyejo (Illinois / Google)

Sanmi (Oluwasanmi) Koyejo is an Assistant Professor in the Department of Computer Science at Stanford University. Koyejo was previously an Associate Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Koyejo's research interests are in developing the principles and practice of trustworthy machine learning, focusing on applications to neuroscience and healthcare. Koyejo completed a Ph.D. in Electrical Engineering at the University of Texas at Austin, advised by Joydeep Ghosh, and postdoctoral research at Stanford University with Russell A. Poldrack and Pradeep Ravikumar. Koyejo has been the recipient of several awards, including a best paper award from the conference on uncertainty in artificial intelligence, a Skip Ellis Early Career Award, a Sloan Fellowship, a Terman faculty fellowship, an NSF CAREER award, a Kavli Fellowship, an IJCAI early career spotlight, and a trainee award from the Organization for Human Brain Mapping. Koyejo spends time at Google as a part of the Brain team, serves on the Neural Information Processing Systems Foundation Board, the Association for Health Learning and Inference Board, and as president of the Black in AI organization.
Bo Li (UIUC)

Dr. Bo Li is an assistant professor in the Department of Computer Science at the University of Illinois at Urbana–Champaign. She is the recipient of the IJCAI Computers and Thought Award, Alfred P. Sloan Research Fellowship, AI’s 10 to Watch, NSF CAREER Award, MIT Technology Review TR-35 Award, Dean's Award for Excellence in Research, C.W. Gear Outstanding Junior Faculty Award, Intel Rising Star award, Symantec Research Labs Fellowship, Rising Star Award, Research Awards from Tech companies such as Amazon, Facebook, Intel, IBM, and eBay, and best paper awards at several top machine learning and security conferences. Her research focuses on both theoretical and practical aspects of trustworthy machine learning, which is at the intersection of machine learning, security, privacy, and game theory. She has designed several scalable frameworks for trustworthy machine learning and privacy-preserving data publishing. Her work has been featured by major publications and media outlets such as Nature, Wired, Fortune, and New York Times.
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Uncovering the Connections Between Adversarial Transferability and Knowledge Transferability »
Fri. Jul 23rd 02:30 -- 02:35 AM Room
More from the Same Authors
-
2022 : Group Distributionally Robust Reinforcement Learning with Hierarchical Latent Variables »
Mengdi Xu · Peide Huang · Visak Kumar · Jielin Qiu · Chao Fang · Kuan-Hui Lee · Xuewei Qi · Henry Lam · Bo Li · Ding Zhao -
2022 : Adapting to Shifts in Latent Confounders via Observed Concepts and Proxies »
Matt Kusner · Ibrahim Alabdulmohsin · Stephen Pfohl · Olawale Salaudeen · Arthur Gretton · Sanmi Koyejo · Jessica Schrouff · Alexander D'Amour -
2022 : Paper 10: CausalAF: Causal Autoregressive Flow for Safety-Critical Scenes Generation »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao · Hitesh Arora -
2023 : Layer-Wise Feedback Alignment is Conserved in Deep Neural Networks »
Zach Robertson · Sanmi Koyejo -
2023 : FACADE: A Framework for Adversarial Circuit Anomaly Detection and Evaluation »
Dhruv Pai · Andres Carranza · Rylan Schaeffer · Arnuv Tandon · Sanmi Koyejo -
2023 : DiffScene: Diffusion-Based Safety-Critical Scenario Generation for Autonomous Vehicles »
Chejian Xu · Ding Zhao · Alberto Sngiovanni Vincentelli · Bo Li -
2023 : Beyond Scale: the Diversity Coefficient as a Data Quality Metric Demonstrates LLMs are Pre-trained on Formally Diverse Data »
Alycia Lee · Brando Miranda · Brando Miranda · Sanmi Koyejo -
2023 : Is Pre-training Truly Better Than Meta-Learning? »
Brando Miranda · Patrick Yu · Saumya Goyal · Yu-Xiong Wang · Sanmi Koyejo -
2023 : Leveraging Side Information for Communication-Efficient Federated Learning »
Berivan Isik · Francesco Pase · Deniz Gunduz · Sanmi Koyejo · Tsachy Weissman · Michele Zorzi -
2023 : Semantically Adversarial Scene Generation with Explicit Knowledge Guidance for Autonomous Driving »
Wenhao Ding · Haohong Lin · Bo Li · Ding Zhao -
2023 : Invalid Logic, Equivalent Gains: The Bizarreness of Reasoning in Language Model Prompting »
Rylan Schaeffer · Kateryna Pistunova · Samar Khanna · Sarthak Consul · Sanmi Koyejo -
2023 : GPT-Zip: Deep Compression of Finetuned Large Language Models »
Berivan Isik · Hermann Kumbong · Wanyi Ning · Xiaozhe Yao · Sanmi Koyejo · Ce Zhang -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Beyond Scale: the Diversity Coefficient as a Data Quality Metric Demonstrates LLMs are Pre-trained on Formally Diverse Data »
Alycia Lee · Brando Miranda · Sanmi Koyejo -
2023 : Are Emergent Abilities of Large Language Models a Mirage? »
Rylan Schaeffer · Brando Miranda · Sanmi Koyejo -
2023 : Thomas: Learning to Explore Human Preference via Probabilistic Reward Model »
Sang Truong · Duc Nguyen · Tho Quan · Sanmi Koyejo -
2023 : Visual-based Policy Learning with Latent Language Encoding »
Jielin Qiu · Mengdi Xu · William Han · Bo Li · Ding Zhao -
2023 : Can Brain Signals Reveal Inner Alignment with Human Languages? »
Jielin Qiu · William Han · Jiacheng Zhu · Mengdi Xu · Douglas Weber · Bo Li · Ding Zhao -
2023 : On learning domain general predictors »
Sanmi Koyejo -
2023 : Deceptive Alignment Monitoring »
Andres Carranza · Dhruv Pai · Rylan Schaeffer · Arnuv Tandon · Sanmi Koyejo -
2023 : Vignettes on Pairwise-Feedback Mechanisms for Learning with Uncertain Preferences »
Sanmi Koyejo -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 Workshop: Knowledge and Logical Reasoning in the Era of Data-driven Learning »
Nezihe Merve Gürel · Bo Li · Theodoros Rekatsinas · Beliz Gunel · Alberto Sngiovanni Vincentelli · Paroma Varma -
2023 Workshop: 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Baharan Mirzasoleiman · Sanmi Koyejo -
2023 Panel: The Societal Impacts of AI »
Sanmi Koyejo · Samy Bengio · Ashia Wilson · Kirikowhai Mikaere · Joelle Pineau -
2023 Poster: Pairwise Ranking Losses of Click-Through Rates Prediction for Welfare Maximization in Ad Auctions »
Boxiang Lyu · Zhe Feng · Zach Robertson · Sanmi Koyejo -
2023 Poster: UMD: Unsupervised Model Detection for X2X Backdoor Attacks »
Zhen Xiang · Zidi Xiong · Bo Li -
2023 Poster: Interpolation for Robust Learning: Data Augmentation on Wasserstein Geodesics »
Jiacheng Zhu · Jielin Qiu · Aritra Guha · Zhuolin Yang · XuanLong Nguyen · Bo Li · Ding Zhao -
2023 Poster: Reconstructive Neuron Pruning for Backdoor Defense »
Yige Li · XIXIANG LYU · Xingjun Ma · Nodens Koren · Lingjuan Lyu · Bo Li · Yu-Gang Jiang -
2022 : Paper 15: On the Robustness of Safe Reinforcement Learning under Observational Perturbations »
Zuxin Liu · Zhepeng Cen · Huan Zhang · Jie Tan · Bo Li · Ding Zhao -
2022 Workshop: New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Hima Lakkaraju · Sanmi Koyejo -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Provable Domain Generalization via Invariant-Feature Subspace Recovery »
Haoxiang Wang · Haozhe Si · Bo Li · Han Zhao -
2022 Poster: How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection »
Mantas Mazeika · Bo Li · David Forsyth -
2022 Poster: Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization »
Xiaojun Xu · Yibo Zhang · Evelyn Ma · Hyun Ho Son · Sanmi Koyejo · Bo Li -
2022 Poster: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2022 Spotlight: How to Steer Your Adversary: Targeted and Efficient Model Stealing Defenses with Gradient Redirection »
Mantas Mazeika · Bo Li · David Forsyth -
2022 Spotlight: Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization »
Xiaojun Xu · Yibo Zhang · Evelyn Ma · Hyun Ho Son · Sanmi Koyejo · Bo Li -
2022 Spotlight: Understanding Gradual Domain Adaptation: Improved Analysis, Optimal Path and Beyond »
Haoxiang Wang · Bo Li · Han Zhao -
2022 Poster: Certifying Out-of-Domain Generalization for Blackbox Functions »
Maurice Weber · Linyi Li · Boxin Wang · Zhikuan Zhao · Bo Li · Ce Zhang -
2022 Poster: Double Sampling Randomized Smoothing »
Linyi Li · Jiawei Zhang · Tao Xie · Bo Li -
2022 Poster: TPC: Transformation-Specific Smoothing for Point Cloud Models »
Wenda Chu · Linyi Li · Bo Li -
2022 Spotlight: TPC: Transformation-Specific Smoothing for Point Cloud Models »
Wenda Chu · Linyi Li · Bo Li -
2022 Spotlight: Double Sampling Randomized Smoothing »
Linyi Li · Jiawei Zhang · Tao Xie · Bo Li -
2022 Spotlight: Certifying Out-of-Domain Generalization for Blackbox Functions »
Maurice Weber · Linyi Li · Boxin Wang · Zhikuan Zhao · Bo Li · Ce Zhang -
2021 : Discussion Panel #2 »
Bo Li · Nicholas Carlini · Andrzej Banburski · Kamalika Chaudhuri · Will Xiao · Cihang Xie -
2021 Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning »
Hang Su · Yinpeng Dong · Tianyu Pang · Eric Wong · Zico Kolter · Shuo Feng · Bo Li · Henry Liu · Dan Hendrycks · Francesco Croce · Leslie Rice · Tian Tian -
2021 Poster: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation »
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li -
2021 Poster: Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation »
Haoxiang Wang · Han Zhao · Bo Li -
2021 Spotlight: Progressive-Scale Boundary Blackbox Attack via Projective Gradient Estimation »
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li -
2021 Spotlight: Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation »
Haoxiang Wang · Han Zhao · Bo Li -
2021 Spotlight: CRFL: Certifiably Robust Federated Learning against Backdoor Attacks »
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li -
2021 Poster: Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks »
Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li -
2021 Spotlight: Knowledge Enhanced Machine Learning Pipeline against Diverse Adversarial Attacks »
Nezihe Merve Gürel · Xiangyu Qi · Luka Rimanic · Ce Zhang · Bo Li -
2021 Poster: Optimizing Black-box Metrics with Iterative Example Weighting »
Gaurush Hiranandani · Jatin Mathur · Harikrishna Narasimhan · Mahdi Milani Fard · Sanmi Koyejo -
2021 Spotlight: Optimizing Black-box Metrics with Iterative Example Weighting »
Gaurush Hiranandani · Jatin Mathur · Harikrishna Narasimhan · Mahdi Milani Fard · Sanmi Koyejo -
2020 Poster: Improving Robustness of Deep-Learning-Based Image Reconstruction »
Ankit Raj · Yoram Bresler · Bo Li -
2020 Poster: On the consistency of top-k surrogate losses »
Forest Yang · Sanmi Koyejo -
2020 Poster: Adversarial Mutual Information for Text Generation »
Boyuan Pan · Yazheng Yang · Kaizhao Liang · Bhavya Kailkhura · Zhongming Jin · Xian-Sheng Hua · Deng Cai · Bo Li -
2020 Poster: Optimization and Analysis of the pAp@k Metric for Recommender Systems »
Gaurush Hiranandani · Warut Vijitbenjaronk · Sanmi Koyejo · Prateek Jain -
2020 Poster: Zeno++: Robust Fully Asynchronous SGD »
Cong Xie · Sanmi Koyejo · Indranil Gupta -
2019 Poster: Partially Linear Additive Gaussian Graphical Models »
Sinong Geng · Minhao Yan · Mladen Kolar · Sanmi Koyejo -
2019 Oral: Partially Linear Additive Gaussian Graphical Models »
Sinong Geng · Minhao Yan · Mladen Kolar · Sanmi Koyejo -
2019 Poster: Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance »
Cong Xie · Sanmi Koyejo · Indranil Gupta -
2019 Oral: Zeno: Distributed Stochastic Gradient Descent with Suspicion-based Fault-tolerance »
Cong Xie · Sanmi Koyejo · Indranil Gupta -
2018 Poster: Binary Classification with Karmic, Threshold-Quasi-Concave Metrics »
Bowei Yan · Sanmi Koyejo · Kai Zhong · Pradeep Ravikumar -
2018 Oral: Binary Classification with Karmic, Threshold-Quasi-Concave Metrics »
Bowei Yan · Sanmi Koyejo · Kai Zhong · Pradeep Ravikumar -
2017 Poster: Consistency Analysis for Binary Classification Revisited »
Krzysztof Dembczynski · Wojciech Kotlowski · Sanmi Koyejo · Nagarajan Natarajan -
2017 Talk: Consistency Analysis for Binary Classification Revisited »
Krzysztof Dembczynski · Wojciech Kotlowski · Sanmi Koyejo · Nagarajan Natarajan