Timezone: »
Machine learning is predicated on the concept of generalization: a model achieving low error on a sufficiently large training set should also perform well on novel samples from the same distribution. We show that both data whitening and second order optimization can harm or entirely prevent generalization. In general, model training harnesses information contained in the sample-sample second moment matrix of a dataset. For a general class of models, namely models with a fully connected first layer, we prove that the information contained in this matrix is the only information which can be used to generalize. Models trained using whitened data, or with certain second order optimization schemes, have less access to this information, resulting in reduced or nonexistent generalization ability. We experimentally verify these predictions for several architectures, and further demonstrate that generalization continues to be harmed even when theoretical requirements are relaxed. However, we also show experimentally that regularized second order optimization can provide a practical tradeoff, where training is accelerated but less information is lost, and generalization can in some circumstances even improve.
Author Information
Neha Wadia (University of California, Berkeley)
Daniel Duckworth (Google Brain)
Samuel Schoenholz (Google Brain)
Ethan Dyer (Google)
Jascha Sohl-Dickstein (Google Brain)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Whitening and Second Order Optimization Both Make Information in the Dataset Unusable During Training, and Can Reduce or Prevent Generalization »
Wed. Jul 21st 04:00 -- 06:00 AM Room Virtual
More from the Same Authors
-
2023 Poster: PaLM-E: An Embodied Multimodal Language Model »
Danny Driess · Fei Xia · Mehdi S. M. Sajjadi · Corey Lynch · Aakanksha Chowdhery · Brian Ichter · Ayzaan Wahid · Jonathan Tompson · Quan Vuong · Tianhe (Kevin) Yu · Wenlong Huang · Yevgen Chebotar · Pierre Sermanet · Daniel Duckworth · Sergey Levine · Vincent Vanhoucke · Karol Hausman · Marc Toussaint · Klaus Greff · Andy Zeng · Igor Mordatch · Pete Florence -
2022 Poster: Fast Finite Width Neural Tangent Kernel »
Roman Novak · Jascha Sohl-Dickstein · Samuel Schoenholz -
2022 Spotlight: Fast Finite Width Neural Tangent Kernel »
Roman Novak · Jascha Sohl-Dickstein · Samuel Schoenholz -
2022 Poster: Deep equilibrium networks are sensitive to initialization statistics »
Atish Agarwala · Samuel Schoenholz -
2022 Poster: Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling »
Jiri Hron · Roman Novak · Jeffrey Pennington · Jascha Sohl-Dickstein -
2022 Spotlight: Wide Bayesian neural networks have a simple weight posterior: theory and accelerated sampling »
Jiri Hron · Roman Novak · Jeffrey Pennington · Jascha Sohl-Dickstein -
2022 Spotlight: Deep equilibrium networks are sensitive to initialization statistics »
Atish Agarwala · Samuel Schoenholz -
2021 Poster: Learn2Hop: Learned Optimization on Rough Landscapes »
Amil Merchant · Luke Metz · Samuel Schoenholz · Ekin Dogus Cubuk -
2021 Spotlight: Learn2Hop: Learned Optimization on Rough Landscapes »
Amil Merchant · Luke Metz · Samuel Schoenholz · Ekin Dogus Cubuk -
2021 Poster: Tilting the playing field: Dynamical loss functions for machine learning »
Miguel Ruiz Garcia · Ge Zhang · Samuel Schoenholz · Andrea Liu -
2021 Oral: Tilting the playing field: Dynamical loss functions for machine learning »
Miguel Ruiz Garcia · Ge Zhang · Samuel Schoenholz · Andrea Liu -
2021 Poster: Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies »
Paul Vicol · Luke Metz · Jascha Sohl-Dickstein -
2021 Oral: Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies »
Paul Vicol · Luke Metz · Jascha Sohl-Dickstein -
2020 Poster: Infinite attention: NNGP and NTK for deep attention networks »
Jiri Hron · Yasaman Bahri · Jascha Sohl-Dickstein · Roman Novak -
2020 Poster: Disentangling Trainability and Generalization in Deep Neural Networks »
Lechao Xiao · Jeffrey Pennington · Samuel Schoenholz -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Understanding overparameterized neural networks »
Jascha Sohl-Dickstein -
2019 Poster: Understanding and correcting pathologies in the training of learned optimizers »
Luke Metz · Niru Maheswaranathan · Jeremy Nixon · Daniel Freeman · Jascha Sohl-Dickstein -
2019 Poster: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Oral: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Oral: Understanding and correcting pathologies in the training of learned optimizers »
Luke Metz · Niru Maheswaranathan · Jeremy Nixon · Daniel Freeman · Jascha Sohl-Dickstein -
2019 Poster: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2019 Oral: The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study »
Daniel Park · Jascha Sohl-Dickstein · Quoc Le · Samuel Smith -
2018 Poster: Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks »
Minmin Chen · Jeffrey Pennington · Samuel Schoenholz -
2018 Oral: Dynamical Isometry and a Mean Field Theory of RNNs: Gating Enables Signal Propagation in Recurrent Neural Networks »
Minmin Chen · Jeffrey Pennington · Samuel Schoenholz -
2018 Poster: Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks »
Lechao Xiao · Yasaman Bahri · Jascha Sohl-Dickstein · Samuel Schoenholz · Jeffrey Pennington -
2018 Oral: Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks »
Lechao Xiao · Yasaman Bahri · Jascha Sohl-Dickstein · Samuel Schoenholz · Jeffrey Pennington -
2017 Poster: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Talk: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Poster: Input Switched Affine Networks: An RNN Architecture Designed for Interpretability »
Jakob Foerster · Justin Gilmer · Jan Chorowski · Jascha Sohl-Dickstein · David Sussillo -
2017 Poster: Learned Optimizers that Scale and Generalize »
Olga Wichrowska · Niru Maheswaranathan · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Nando de Freitas · Jascha Sohl-Dickstein -
2017 Talk: Input Switched Affine Networks: An RNN Architecture Designed for Interpretability »
Jakob Foerster · Justin Gilmer · Jan Chorowski · Jascha Sohl-Dickstein · David Sussillo -
2017 Poster: On the Expressive Power of Deep Neural Networks »
Maithra Raghu · Ben Poole · Surya Ganguli · Jon Kleinberg · Jascha Sohl-Dickstein -
2017 Talk: Learned Optimizers that Scale and Generalize »
Olga Wichrowska · Niru Maheswaranathan · Matthew Hoffman · Sergio Gómez Colmenarejo · Misha Denil · Nando de Freitas · Jascha Sohl-Dickstein -
2017 Talk: On the Expressive Power of Deep Neural Networks »
Maithra Raghu · Ben Poole · Surya Ganguli · Jon Kleinberg · Jascha Sohl-Dickstein