Timezone: »

 
Poster
STRODE: Stochastic Boundary Ordinary Differential Equation
Huang Hengguan · Hongfu Liu · Hao Wang · Chang Xiao · Ye Wang

Thu Jul 22 09:00 PM -- 11:00 PM (PDT) @ Virtual

Perception of time from sequentially acquired sensory inputs is rooted in everyday behaviors of individual organisms. Yet, most algorithms for time-series modeling fail to learn dynamics of random event timings directly from visual or audio inputs, requiring timing annotations during training that are usually unavailable for real-world applications. For instance, neuroscience perspectives on postdiction imply that there exist variable temporal ranges within which the incoming sensory inputs can affect the earlier perception, but such temporal ranges are mostly unannotated for real applications such as automatic speech recognition (ASR). In this paper, we present a probabilistic ordinary differential equation (ODE), called STochastic boundaRy ODE (STRODE), that learns both the timings and the dynamics of time series data without requiring any timing annotations during training. STRODE allows the usage of differential equations to sample from the posterior point processes, efficiently and analytically. We further provide theoretical guarantees on the learning of STRODE. Our empirical results show that our approach successfully infers event timings of time series data. Our method achieves competitive or superior performances compared to existing state-of-the-art methods for both synthetic and real-world datasets.

Author Information

Huang Hengguan (NUS)
Hongfu Liu (National University of Singapore)
Hao Wang (Rutgers University)
Hao Wang

Dr. Hao Wang is currently an assistant professor in the department of computer science at Rutgers University. Previously he was a Postdoctoral Associate at the Computer Science & Artificial Intelligence Lab (CSAIL) of MIT, working with Dina Katabi and Tommi Jaakkola. He received his PhD degree from the Hong Kong University of Science and Technology, as the sole recipient of the School of Engineering PhD Research Excellence Award in 2017. He has been a visiting researcher in the Machine Learning Department of Carnegie Mellon University. His research focuses on statistical machine learning, deep learning, and data mining, with broad applications on recommender systems, healthcare, user profiling, social network analysis, text mining, etc. His work on Bayesian deep learning for recommender systems and personalized modeling has inspired hundreds of follow-up works published at top conferences such as AAAI, ICML, IJCAI, KDD, NIPS, SIGIR, and WWW. It has received over 1000 citations, becoming the most cited paper at KDD 2015. In 2015, he was awarded the Microsoft Fellowship in Asia and the Baidu Research Fellowship for his innovation on Bayesian deep learning and its applications on data mining and social network analysis.

Chang Xiao (National University of Singapore)

Interested in machine learning topics with audio and music

Ye Wang (National University of Singapore)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors