Timezone: »
In real-world applications, data often come in a growing manner, where the data volume and the number of classes may increase dynamically. This will bring a critical challenge for learning: given the increasing data volume or the number of classes, one has to instantaneously adjust the neural model capacity to obtain promising performance. Existing methods either ignore the growing nature of data or seek to independently search an optimal architecture for a given dataset, and thus are incapable of promptly adjusting the architectures for the changed data. To address this, we present a neural architecture adaptation method, namely Adaptation eXpert (AdaXpert), to efficiently adjust previous architectures on the growing data. Specifically, we introduce an architecture adjuster to generate a suitable architecture for each data snapshot, based on the previous architecture and the different extent between current and previous data distributions. Furthermore, we propose an adaptation condition to determine the necessity of adjustment, thereby avoiding unnecessary and time-consuming adjustments. Extensive experiments on two growth scenarios (increasing data volume and number of classes) demonstrate the effectiveness of the proposed method.
Author Information
Shuaicheng Niu (South China University of Technology)
Jiaxiang Wu (Tencent AI Lab)
Guanghui Xu (South China University of Technology)
Yifan Zhang (National University of Singapore)
Yong Guo (South China University of Technology)
Peilin Zhao (Tencent AI Lab)
Peng Wang (Northwestern Polytechnical University)
Mingkui Tan (South China University of Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: AdaXpert: Adapting Neural Architecture for Growing Data »
Thu. Jul 22nd 02:25 -- 02:30 AM Room
More from the Same Authors
-
2023 Poster: Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score »
Shuhai Zhang · Feng Liu · Jiahao Yang · 逸凡 杨 · Changsheng Li · Bo Han · Mingkui Tan -
2022 Poster: Efficient Test-Time Model Adaptation without Forgetting »
Shuaicheng Niu · Jiaxiang Wu · Yifan Zhang · Yaofo Chen · Shijian Zheng · Peilin Zhao · Mingkui Tan -
2022 Spotlight: Efficient Test-Time Model Adaptation without Forgetting »
Shuaicheng Niu · Jiaxiang Wu · Yifan Zhang · Yaofo Chen · Shijian Zheng · Peilin Zhao · Mingkui Tan -
2022 Poster: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Poster: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Spotlight: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Spotlight: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2021 Poster: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2021 Spotlight: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2020 Poster: Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search »
Yong Guo · Yaofo Chen · Yin Zheng · Peilin Zhao · Jian Chen · Junzhou Huang · Mingkui Tan -
2019 Poster: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2019 Oral: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2018 Poster: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Poster: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Oral: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Oral: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang