Timezone: »
Several recent applications of optimal transport (OT) theory to machine learning have relied on regularization, notably entropy and the Sinkhorn algorithm. Because matrix-vector products are pervasive in the Sinkhorn algorithm, several works have proposed to \textit{approximate} kernel matrices appearing in its iterations using low-rank factors. Another route lies instead in imposing low-nonnegative rank constraints on the feasible set of couplings considered in OT problems, with no approximations on cost nor kernel matrices. This route was first explored by~\citet{forrow2018statistical}, who proposed an algorithm tailored for the squared Euclidean ground cost, using a proxy objective that can be solved through the machinery of regularized 2-Wasserstein barycenters. Building on this, we introduce in this work a generic approach that aims at solving, in full generality, the OT problem under low-nonnegative rank constraints with arbitrary costs. Our algorithm relies on an explicit factorization of low-rank couplings as a product of \textit{sub-coupling} factors linked by a common marginal; similar to an NMF approach, we alternatively updates these factors. We prove the non-asymptotic stationary convergence of this algorithm and illustrate its efficiency on benchmark experiments.
Author Information
Meyer Scetbon (CREST, ENSAE)
Marco Cuturi (Google)
Gabriel Peyré (CNRS and ENS)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Low-Rank Sinkhorn Factorization »
Tue. Jul 20th 12:35 -- 12:40 PM Room
More from the Same Authors
-
2023 Poster: Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective »
Michael Sander · Joan Puigcerver · Josip Djolonga · Gabriel Peyré · Mathieu Blondel -
2022 Poster: An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings »
Meyer Scetbon · Laurent Meunier · Yaniv Romano -
2022 Poster: Unsupervised Ground Metric Learning Using Wasserstein Singular Vectors »
Geert-Jan Huizing · Laura Cantini · Gabriel Peyré -
2022 Spotlight: Unsupervised Ground Metric Learning Using Wasserstein Singular Vectors »
Geert-Jan Huizing · Laura Cantini · Gabriel Peyré -
2022 Spotlight: An Asymptotic Test for Conditional Independence using Analytic Kernel Embeddings »
Meyer Scetbon · Laurent Meunier · Yaniv Romano -
2022 Poster: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Spotlight: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 Poster: Mixed Nash Equilibria in the Adversarial Examples Game »
Laurent Meunier · Meyer Scetbon · Rafael Pinot · Jamal Atif · Yann Chevaleyre -
2021 Spotlight: Mixed Nash Equilibria in the Adversarial Examples Game »
Laurent Meunier · Meyer Scetbon · Rafael Pinot · Jamal Atif · Yann Chevaleyre -
2021 Poster: Momentum Residual Neural Networks »
Michael Sander · Pierre Ablin · Mathieu Blondel · Gabriel Peyré -
2021 Spotlight: Momentum Residual Neural Networks »
Michael Sander · Pierre Ablin · Mathieu Blondel · Gabriel Peyré -
2020 Poster: Regularized Optimal Transport is Ground Cost Adversarial »
François-Pierre Paty · Marco Cuturi -
2020 Poster: Missing Data Imputation using Optimal Transport »
Boris Muzellec · Julie Josse · Claire Boyer · Marco Cuturi -
2020 Poster: Supervised Quantile Normalization for Low Rank Matrix Factorization »
Marco Cuturi · Olivier Teboul · Jonathan Niles-Weed · Jean-Philippe Vert -
2020 Poster: Super-efficiency of automatic differentiation for functions defined as a minimum »
Pierre Ablin · Gabriel Peyré · Thomas Moreau -
2020 Poster: Debiased Sinkhorn barycenters »
Hicham Janati · Marco Cuturi · Alexandre Gramfort -
2020 Poster: Harmonic Decompositions of Convolutional Networks »
Meyer Scetbon · Zaid Harchaoui -
2019 Poster: Geometric Losses for Distributional Learning »
Arthur Mensch · Mathieu Blondel · Gabriel Peyré -
2019 Oral: Geometric Losses for Distributional Learning »
Arthur Mensch · Mathieu Blondel · Gabriel Peyré -
2019 Poster: Stochastic Deep Networks »
Gwendoline De Bie · Gabriel Peyré · Marco Cuturi -
2019 Poster: Subspace Robust Wasserstein Distances »
François-Pierre Paty · Marco Cuturi -
2019 Oral: Stochastic Deep Networks »
Gwendoline De Bie · Gabriel Peyré · Marco Cuturi -
2019 Oral: Subspace Robust Wasserstein Distances »
François-Pierre Paty · Marco Cuturi