Timezone: »
Having the ability to acquire inherent skills from environments without any external rewards or supervision like humans is an important problem. We propose a novel unsupervised skill discovery method named Information Bottleneck Option Learning (IBOL). On top of the linearization of environments that promotes more various and distant state transitions, IBOL enables the discovery of diverse skills. It provides the abstraction of the skills learned with the information bottleneck framework for the options with improved stability and encouraged disentanglement. We empirically demonstrate that IBOL outperforms multiple state-of-the-art unsupervised skill discovery methods on the information-theoretic evaluations and downstream tasks in MuJoCo environments, including Ant, HalfCheetah, Hopper and D'Kitty. Our code is available at https://vision.snu.ac.kr/projects/ibol.
Author Information
Jaekyeom Kim (Seoul National University)
Seohong Park (Seoul National University)
Gunhee Kim (Seoul National University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Unsupervised Skill Discovery with Bottleneck Option Learning »
Wed. Jul 21st 04:00 -- 06:00 PM Room
More from the Same Authors
-
2023 : Offline Goal-Conditioned RL with Latent States as Actions »
Seohong Park · Dibya Ghosh · Benjamin Eysenbach · Sergey Levine -
2023 Poster: Predictable MDP Abstraction for Unsupervised Model-Based RL »
Seohong Park · Sergey Levine -
2023 Poster: Controllability-Aware Unsupervised Skill Discovery »
Seohong Park · Kimin Lee · Youngwoon Lee · Pieter Abbeel -
2021 Poster: Unsupervised Representation Learning via Neural Activation Coding »
Yookoon Park · Sangho Lee · Gunhee Kim · David Blei -
2021 Oral: Unsupervised Representation Learning via Neural Activation Coding »
Yookoon Park · Sangho Lee · Gunhee Kim · David Blei -
2019 Poster: Variational Laplace Autoencoders »
Yookoon Park · Chris Kim · Gunhee Kim -
2019 Oral: Variational Laplace Autoencoders »
Yookoon Park · Chris Kim · Gunhee Kim -
2019 Poster: Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty »
Youngjin Kim · Daniel Nam · Hyunwoo Kim · Ji-Hoon Kim · Gunhee Kim -
2019 Poster: EMI: Exploration with Mutual Information »
Hyoungseok Kim · Jaekyeom Kim · Yeonwoo Jeong · Sergey Levine · Hyun Oh Song -
2019 Oral: Curiosity-Bottleneck: Exploration By Distilling Task-Specific Novelty »
Youngjin Kim · Daniel Nam · Hyunwoo Kim · Ji-Hoon Kim · Gunhee Kim -
2019 Oral: EMI: Exploration with Mutual Information »
Hyoungseok Kim · Jaekyeom Kim · Yeonwoo Jeong · Sergey Levine · Hyun Oh Song -
2018 Poster: Video Prediction with Appearance and Motion Conditions »
Yunseok Jang · Gunhee Kim · Yale Song -
2018 Oral: Video Prediction with Appearance and Motion Conditions »
Yunseok Jang · Gunhee Kim · Yale Song -
2017 Poster: SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization »
Juyong Kim · Yookoon Park · Gunhee Kim · Sung Ju Hwang -
2017 Talk: SplitNet: Learning to Semantically Split Deep Networks for Parameter Reduction and Model Parallelization »
Juyong Kim · Yookoon Park · Gunhee Kim · Sung Ju Hwang