Timezone: »
Poster
Light RUMs
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins
A Random Utility Model (RUM) is a distribution on permutations over a universe of items. For each subset of the universe, a RUM induces a natural distribution of the winner in the subset: choose a permutation according to the RUM distribution and pick the maximum item in the subset according to the chosen permutation. RUMs are widely used in the theory of discrete choice.
In this paper we consider the question of the (lossy) compressibility of RUMs on a universe of size $n$, i.e., the minimum number of bits required to approximate the winning probabilities of each slate. Our main result is that RUMs can be approximated using $\tilde{O}(n^2)$ bits, an exponential improvement over the standard representation; furthermore, we show that this bound is optimal.
En route, we sharpen the classical existential result of McFadden and Train (2000) by showing that the minimum size of a mixture of multinomial logits required to can approximate a general RUM is $\tilde{\Theta}(n)$.
Author Information
Flavio Chierichetti (Sapienza University)
Ravi Kumar (Google)
Andrew Tomkins (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Spotlight: Light RUMs »
Wed. Jul 21st 01:35 -- 01:40 AM Room
More from the Same Authors
-
2021 : Randomized Response with Prior and Applications to Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 : User-Level Private Learning via Correlated Sampling »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2023 Poster: Bandit Online Linear Optimization with Hints and Queries »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2023 Poster: On User-Level Private Convex Optimization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi · Raghu Meka · Chiyuan Zhang -
2022 Poster: Parsimonious Learning-Augmented Caching »
Sungjin Im · Ravi Kumar · Aditya Petety · Manish Purohit -
2022 Poster: RUMs from Head-to-Head Contests »
Matteo Almanza · Flavio Chierichetti · Ravi Kumar · Alessandro Panconesi · Andrew Tomkins -
2022 Spotlight: RUMs from Head-to-Head Contests »
Matteo Almanza · Flavio Chierichetti · Ravi Kumar · Alessandro Panconesi · Andrew Tomkins -
2022 Spotlight: Parsimonious Learning-Augmented Caching »
Sungjin Im · Ravi Kumar · Aditya Petety · Manish Purohit -
2022 Poster: Faster Privacy Accounting via Evolving Discretization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2022 Spotlight: Faster Privacy Accounting via Evolving Discretization »
Badih Ghazi · Pritish Kamath · Ravi Kumar · Pasin Manurangsi -
2021 Poster: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha -
2021 Spotlight: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha -
2021 Poster: Locally Private k-Means in One Round »
Alisa Chang · Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2021 Oral: Locally Private k-Means in One Round »
Alisa Chang · Badih Ghazi · Ravi Kumar · Pasin Manurangsi -
2020 Poster: Online Learning with Imperfect Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2020 Poster: Private Counting from Anonymous Messages: Near-Optimal Accuracy with Vanishing Communication Overhead »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh -
2019 Poster: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2019 Oral: Faster Algorithms for Binary Matrix Factorization »
Ravi Kumar · Rina Panigrahy · Ali Rahimi · David Woodruff -
2018 Poster: Learning a Mixture of Two Multinomial Logits »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2018 Oral: Learning a Mixture of Two Multinomial Logits »
Flavio Chierichetti · Ravi Kumar · Andrew Tomkins -
2017 Poster: Algorithms for $\ell_p$ Low-Rank Approximation »
Flavio Chierichetti · Sreenivas Gollapudi · Ravi Kumar · Silvio Lattanzi · Rina Panigrahy · David Woodruff -
2017 Talk: Algorithms for $\ell_p$ Low-Rank Approximation »
Flavio Chierichetti · Sreenivas Gollapudi · Ravi Kumar · Silvio Lattanzi · Rina Panigrahy · David Woodruff