Timezone: »
Spotlight
Decentralized Riemannian Gradient Descent on the Stiefel Manifold
Shixiang Chen · Alfredo Garcia · Mingyi Hong · Shahin Shahrampour
We consider a distributed non-convex optimization where a network of agents aims at minimizing a global function over the Stiefel manifold. The global function is represented as a finite sum of smooth local functions, where each local function is associated with one agent and agents communicate with each other over an undirected connected graph. The problem is non-convex as local functions are possibly non-convex (but smooth) and the Steifel manifold is a non-convex set. We present a decentralized Riemannian stochastic gradient method (DRSGD) with the convergence rate of $\mathcal{O}(1/\sqrt{K})$ to a stationary point. To have exact convergence with constant stepsize, we also propose a decentralized Riemannian gradient tracking algorithm (DRGTA) with the convergence rate of $\mathcal{O}(1/K)$ to a stationary point. We use multi-step consensus to preserve the iteration in the local (consensus) region. DRGTA is the first decentralized algorithm with exact convergence for distributed optimization on Stiefel manifold.
Author Information
Shixiang Chen (Texas A&M University)
Alfredo Garcia (Texas A&M University)
Mingyi Hong (University of Minnesota)
Shahin Shahrampour (Texas A&M University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Poster: Decentralized Riemannian Gradient Descent on the Stiefel Manifold »
Tue. Jul 20th 04:00 -- 06:00 PM Room Virtual
More from the Same Authors
-
2021 : Understanding Clipped FedAvg: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Steven Wu · Mingyi Hong -
2022 : Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time Guarantees »
Siliang Zeng · Chenliang Li · Alfredo Garcia · Mingyi Hong -
2023 Poster: Linearly Constrained Bilevel Optimization: A Smoothed Implicit Gradient Approach »
Prashant Khanduri · Ioannis Tsaknakis · Yihua Zhang · Jia Liu · Sijia Liu · Jiawei Zhang · Mingyi Hong -
2023 Poster: FedAvg Converges to Zero Training Loss Linearly for Overparameterized Multi-Layer Neural Networks »
Bingqing Song · Prashant Khanduri · xinwei zhang · Jinfeng Yi · Mingyi Hong -
2023 Poster: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: Understanding Backdoor Attacks through the Adaptability Hypothesis »
XUN XIAN · Ganghua Wang · Jayanth Srinivasa · Ashish Kundu · Xuan Bi · Mingyi Hong · Jie Ding -
2023 Oral: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2022 Poster: A Stochastic Multi-Rate Control Framework For Modeling Distributed Optimization Algorithms »
xinwei zhang · Mingyi Hong · Sairaj Dhople · Nicola Elia -
2022 Spotlight: A Stochastic Multi-Rate Control Framework For Modeling Distributed Optimization Algorithms »
xinwei zhang · Mingyi Hong · Sairaj Dhople · Nicola Elia -
2022 Poster: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Poster: Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization »
Yihua Zhang · Guanhua Zhang · Prashant Khanduri · Mingyi Hong · Shiyu Chang · Sijia Liu -
2022 Spotlight: Revisiting and Advancing Fast Adversarial Training Through The Lens of Bi-Level Optimization »
Yihua Zhang · Guanhua Zhang · Prashant Khanduri · Mingyi Hong · Shiyu Chang · Sijia Liu -
2022 Spotlight: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2020 Poster: Improving the Sample and Communication Complexity for Decentralized Non-Convex Optimization: Joint Gradient Estimation and Tracking »
Haoran Sun · Songtao Lu · Mingyi Hong -
2020 Poster: Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features »
Liang Ding · Rui Tuo · Shahin Shahrampour -
2020 Poster: Min-Max Optimization without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning Attacks »
Sijia Liu · Songtao Lu · Xiangyi Chen · Yao Feng · Kaidi Xu · Abdullah Al-Dujaili · Mingyi Hong · Una-May O'Reilly -
2019 Poster: PA-GD: On the Convergence of Perturbed Alternating Gradient Descent to Second-Order Stationary Points for Structured Nonconvex Optimization »
Songtao Lu · Mingyi Hong · Zhengdao Wang -
2019 Oral: PA-GD: On the Convergence of Perturbed Alternating Gradient Descent to Second-Order Stationary Points for Structured Nonconvex Optimization »
Songtao Lu · Mingyi Hong · Zhengdao Wang -
2018 Poster: Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solution for Nonconvex Distributed Optimization Over Networks »
Mingyi Hong · Meisam Razaviyayn · Jason Lee -
2018 Oral: Gradient Primal-Dual Algorithm Converges to Second-Order Stationary Solution for Nonconvex Distributed Optimization Over Networks »
Mingyi Hong · Meisam Razaviyayn · Jason Lee