Timezone: »
Self-supervised learning (SSL) is an unsupervised approach for representation learning without relying on human-provided labels. It creates auxiliary tasks on unlabeled input data and learns representations by solving these tasks. SSL has demonstrated great success on images, texts, robotics, etc. On a wide variety of tasks, SSL without using human-provided labels achieves performance that is close to fully supervised approaches. Existing SSL research mostly focuses on perception tasks such as image classification, speech recognition, text classification, etc. SSL for reasoning tasks (e.g., symbolic reasoning on graphs, relational reasoning in computer vision, multi-hop reasoning in NLP) is largely ignored. In this workshop, we aim to bridge this gap. We bring together SSL-interested researchers from various domains to discuss how to develop SSL methods for reasoning tasks, such as how to design pretext tasks for symbolic reasoning, how to develop contrastive learning methods for relational reasoning, how to develop SSL approaches to bridge reasoning and perception, etc. Different from previous SSL-related workshops which focus on perception tasks, our workshop focuses on promoting SSL research for reasoning.
Sat 7:50 a.m. - 8:00 a.m.
|
Opening Remarks
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 8:00 a.m. - 8:30 a.m.
|
Invited talk #1: Professor Yoshua Bengio
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 8:30 a.m. - 9:00 a.m.
|
Invited talk #2: Professor Danqi Chen
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 9:00 a.m. - 9:30 a.m.
|
Invited talk #3: Professor Chelsea Finn
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 9:30 a.m. - 10:00 a.m.
|
Invited talk #4: Professor Pieter Abbeel
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 10:00 a.m. - 10:10 a.m.
|
Contributed Talk #1: Hongyu Ren
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 10:10 a.m. - 10:40 a.m.
|
Invited talk #5: Professor Abinav Gupta
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 10:40 a.m. - 11:10 a.m.
|
Invited talk #6: Professor Hanna Hajishirzi
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 11:10 a.m. - 11:50 a.m.
|
Poster Session I
(
Poster Session
)
|
🔗 |
Sat 11:50 a.m. - 12:00 p.m.
|
Contributed Talk #2: Matko Bošnjak
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 12:00 p.m. - 12:10 p.m.
|
Contributed Talk #3: Oleh Rybkin
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 12:10 p.m. - 12:20 p.m.
|
Contributed Talk #4: James Whittington
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 12:20 p.m. - 12:50 p.m.
|
Invited talk #7: Professor Jure Leskovec
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 12:50 p.m. - 1:20 p.m.
|
Invited talk #8: Professor Trevor Darrell
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 1:20 p.m. - 1:50 p.m.
|
Invited talk #9: Professor Sergey Levine
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 1:50 p.m. - 2:20 p.m.
|
Invited talk #10: Professor Ruslan Salakhutdinov
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 2:20 p.m. - 2:50 p.m.
|
Invited talk #11: Professor Stefano Ermon
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 2:50 p.m. - 3:20 p.m.
|
Invited talk #12: Professor Yizhou Sun
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 3:20 p.m. - 3:50 p.m.
|
Invited talk #13: Professor Nuno Vasconcelos
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 3:50 p.m. - 4:00 p.m.
|
Contributed Talk #5: Eltayeb K. E. Ahmed
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 4:00 p.m. - 5:10 p.m.
|
Poster Session II
(
Poster Session
)
|
🔗 |
Sat 5:10 p.m. - 5:20 p.m.
|
Contributed Talk #6: Sihyun Yu
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 5:20 p.m. - 5:30 p.m.
|
Contributed Talk #7: Zhaoyu Li
(
Talk
)
SlidesLive Video » |
🔗 |
Sat 5:30 p.m. - 6:00 p.m.
|
Invited talk #15: Professor Heng Ji
(
talk
)
SlidesLive Video » |
🔗 |
Author Information
Pengtao Xie (UC San Diego)
Shanghang Zhang (UC Berkeley)
Ishan Misra (Facebook AI Research)
Pulkit Agrawal (MIT)
Katerina Fragkiadaki (Carnegie Mellon University)
Ruisi Zhang (SJTU)
Tassilo Klein (SAP SE)
Asli Celikyilmaz (Microsoft Research)
Mihaela van der Schaar (University of Cambridge and UCLA)
Eric Xing (Petuum Inc. and CMU)
More from the Same Authors
-
2021 : Towards Principled Disentanglement for Domain Generalization »
Hanlin Zhang · Yi-Fan Zhang · Weiyang Liu · Adrian Weller · Bernhard Schölkopf · Eric Xing -
2021 : Topological Experience Replay for Fast Q-Learning »
Zhang-Wei Hong · Tao Chen · Yen-Chen Lin · Joni Pajarinen · Pulkit Agrawal -
2021 : Topological Experience Replay for Fast Q-Learning »
Zhang-Wei Hong · Tao Chen · Yen-Chen Lin · Joni Pajarinen · Pulkit Agrawal -
2021 : Understanding the Generalization Gap in Visual Reinforcement Learning »
Anurag Ajay · Ge Yang · Ofir Nachum · Pulkit Agrawal -
2021 : Doing Great at Estimating CATE? On the Neglected Assumptions in Benchmark Comparisons of Treatment Effect Estimators »
Alicia Curth · Mihaela van der Schaar -
2022 : Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta -
2022 : Distributionally Adaptive Meta Reinforcement Learning »
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta -
2023 : Visual Dexterity: In-hand Dexterous Manipulation from Depth »
Tao Chen · Megha Tippur · Siyang Wu · Vikash Kumar · Edward Adelson · Pulkit Agrawal -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Making Scalable Meta Learning Practical »
Sang Keun Choe · Sanket Vaibhav Mehta · Hwijeen Ahn · Willie Neiswanger · Pengtao Xie · Emma Strubell · Eric Xing -
2023 : Breadcrumbs to the Goal: Goal-Conditioned Exploration from Human-in-the-loop feedback »
Marcel Torne Villasevil · Max Balsells I Pamies · Zihan Wang · Samedh Desai · Tao Chen · Pulkit Agrawal · Abhishek Gupta -
2023 : Test-time Adaptation with Diffusion Models »
Mihir Prabhudesai · Tsung-Wei Ke · Alexander Li · Deepak Pathak · Katerina Fragkiadaki -
2023 : Keynote 2: Mihaela van der Schaar (University of Cambridge) - Reality-Centric AI »
Mihaela van der Schaar -
2023 : Mihaela van der Schaar - Causal Deep Learning »
Mihaela van der Schaar -
2023 Poster: Parallel $Q$-Learning: Scaling Off-policy Reinforcement Learning under Massively Parallel Simulation »
Zechu Li · Tao Chen · Zhang-Wei Hong · Anurag Ajay · Pulkit Agrawal -
2023 Poster: Diagnosis, Feedback, Adaptation: A Human-in-the-Loop Framework for Test-Time Policy Adaptation »
Andi Peng · Aviv Netanyahu · Mark Ho · Tianmin Shu · Andreea Bobu · Julie Shah · Pulkit Agrawal -
2023 Poster: Statistical Learning under Heterogenous Distribution Shift »
Max Simchowitz · Anurag Ajay · Pulkit Agrawal · Akshay Krishnamurthy -
2023 Poster: Synthetic Data, Real Errors: How (Not) to Publish and Use Synthetic Data »
Boris van Breugel · Zhaozhi Qian · Mihaela van der Schaar -
2023 Poster: Improving Bi-level Optimization Based Methods with Inspiration from Humans' Classroom Study Techniques »
Pengtao Xie -
2023 Poster: Adaptive Identification of Populations with Treatment Benefit in Clinical Trials: Machine Learning Challenges and Solutions »
Alicia Curth · Alihan Hüyük · Mihaela van der Schaar -
2023 Poster: Straightening Out the Straight-Through Estimator: Overcoming Optimization Challenges in Vector Quantized Networks »
Minyoung Huh · Brian Cheung · Pulkit Agrawal · Phillip Isola -
2023 Poster: In Search of Insights, Not Magic Bullets: Towards Demystification of the Model Selection Dilemma in Heterogeneous Treatment Effect Estimation »
Alicia Curth · Mihaela van der Schaar -
2023 Poster: Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time »
Toon Vanderschueren · Alicia Curth · Wouter Verbeke · Mihaela van der Schaar -
2023 Poster: MonoNeRF: Learning Generalizable NeRFs from Monocular Videos without Camera Poses »
Yang Fu · Ishan Misra · Xiaolong Wang -
2023 Poster: Fair and Accurate Decision Making through Group-Aware Learning »
Ramtin Hosseini · Li Zhang · Bhanu Garg · Pengtao Xie -
2023 Poster: Wasserstein Barycenter Matching for Graph Size Generalization of Message Passing Neural Networks »
Xu Chu · Yujie Jin · Xin Wang · Shanghang Zhang · Yasha Wang · Wenwu Zhu · Hong Mei -
2023 Poster: TGRL: An Algorithm for Teacher Guided Reinforcement Learning »
Idan Shenfeld · Zhang-Wei Hong · Aviv Tamar · Pulkit Agrawal -
2023 Poster: Test-time Adaptation with Slot-Centric Models »
Mihir Prabhudesai · Anirudh Goyal · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gaurav Aggarwal · Thomas Kipf · Deepak Pathak · Katerina Fragkiadaki -
2023 Poster: Learning Compiler Pass Orders using Coreset and Normalized Value Prediction »
Youwei Liang · Kevin Stone · Ali Shameli · Chris Cummins · Mostafa Elhoushi · Jiadong Guo · Benoit Steiner · Xiaomeng Yang · Pengtao Xie · Hugh Leather · Yuandong Tian -
2023 Poster: Learning Representations without Compositional Assumptions »
Tennison Liu · Jeroen Berrevoets · Zhaozhi Qian · Mihaela van der Schaar -
2023 Poster: Differentiable and Transportable Structure Learning »
Jeroen Berrevoets · Nabeel Seedat · Fergus Imrie · Mihaela van der Schaar -
2023 Tutorial: Self-Supervised Learning in Vision: from Research Advances to Best Practices »
Xinlei Chen · Ishan Misra · Randall Balestriero · Mathilde Caron · Christoph Feichtenhofer · Mark Ibrahim -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 Poster: Inverse Contextual Bandits: Learning How Behavior Evolves over Time »
Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar -
2022 Poster: Data-SUITE: Data-centric identification of in-distribution incongruous examples »
Nabeel Seedat · Jonathan Crabbé · Mihaela van der Schaar -
2022 Poster: Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations »
Nabeel Seedat · Fergus Imrie · Alexis Bellot · Zhaozhi Qian · Mihaela van der Schaar -
2022 Poster: Graph Neural Architecture Search Under Distribution Shifts »
Yijian Qin · Xin Wang · Ziwei Zhang · Pengtao Xie · Wenwu Zhu -
2022 Poster: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Spotlight: Data-SUITE: Data-centric identification of in-distribution incongruous examples »
Nabeel Seedat · Jonathan Crabbé · Mihaela van der Schaar -
2022 Spotlight: Discovering Generalizable Spatial Goal Representations via Graph-based Active Reward Learning »
Aviv Netanyahu · Tianmin Shu · Josh Tenenbaum · Pulkit Agrawal -
2022 Spotlight: Graph Neural Architecture Search Under Distribution Shifts »
Yijian Qin · Xin Wang · Ziwei Zhang · Pengtao Xie · Wenwu Zhu -
2022 Spotlight: Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations »
Nabeel Seedat · Fergus Imrie · Alexis Bellot · Zhaozhi Qian · Mihaela van der Schaar -
2022 Spotlight: Inverse Contextual Bandits: Learning How Behavior Evolves over Time »
Alihan Hüyük · Daniel Jarrett · Mihaela van der Schaar -
2022 Poster: Label-Free Explainability for Unsupervised Models »
Jonathan Crabbé · Mihaela van der Schaar -
2022 Poster: SDQ: Stochastic Differentiable Quantization with Mixed Precision »
Xijie Huang · Zhiqiang Shen · Shichao Li · Zechun Liu · Hu Xianghong · Jeffry Wicaksana · Eric Xing · Kwang-Ting Cheng -
2022 Poster: HyperImpute: Generalized Iterative Imputation with Automatic Model Selection »
Daniel Jarrett · Bogdan Cebere · Tennison Liu · Alicia Curth · Mihaela van der Schaar -
2022 Spotlight: HyperImpute: Generalized Iterative Imputation with Automatic Model Selection »
Daniel Jarrett · Bogdan Cebere · Tennison Liu · Alicia Curth · Mihaela van der Schaar -
2022 Spotlight: SDQ: Stochastic Differentiable Quantization with Mixed Precision »
Xijie Huang · Zhiqiang Shen · Shichao Li · Zechun Liu · Hu Xianghong · Jeffry Wicaksana · Eric Xing · Kwang-Ting Cheng -
2022 Spotlight: Label-Free Explainability for Unsupervised Models »
Jonathan Crabbé · Mihaela van der Schaar -
2022 Poster: How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models »
Ahmed Alaa · Boris van Breugel · Evgeny S. Saveliev · Mihaela van der Schaar -
2022 Poster: Neural Laplace: Learning diverse classes of differential equations in the Laplace domain »
Samuel Holt · Zhaozhi Qian · Mihaela van der Schaar -
2022 Poster: Offline RL Policies Should Be Trained to be Adaptive »
Dibya Ghosh · Anurag Ajay · Pulkit Agrawal · Sergey Levine -
2022 Oral: Neural Laplace: Learning diverse classes of differential equations in the Laplace domain »
Samuel Holt · Zhaozhi Qian · Mihaela van der Schaar -
2022 Spotlight: How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating and Auditing Generative Models »
Ahmed Alaa · Boris van Breugel · Evgeny S. Saveliev · Mihaela van der Schaar -
2022 Oral: Offline RL Policies Should Be Trained to be Adaptive »
Dibya Ghosh · Anurag Ajay · Pulkit Agrawal · Sergey Levine -
2022 Expo Talk Panel: Machine learning for drug discovery: Challenges and opportunities »
Mihaela van der Schaar · Jian Tang · A Martin Jones · Sébastien Lemieux · Thomas Watson -
2021 : Mihaela Van der Schaar: Time-series in healthcare: challenges and solutions »
Mihaela van der Schaar -
2021 Workshop: ICML Workshop on Human in the Loop Learning (HILL) »
Trevor Darrell · Xin Wang · Li Erran Li · Fisher Yu · Zeynep Akata · Wenwu Zhu · Pradeep Ravikumar · Shiji Zhou · Shanghang Zhang · Kalesha Bullard -
2021 : Opening Remark »
Shanghang Zhang · Shiji Zhou -
2021 : Invited Talk: Eric P. Xing. A Data-Centric View for Composable Natural Language Processing. »
Eric Xing -
2021 : Quantitative epistemology: conceiving a new human-machine partnership »
Mihaela van der Schaar -
2021 Workshop: Interpretable Machine Learning in Healthcare »
Yuyin Zhou · Xiaoxiao Li · Vicky Yao · Pengtao Xie · DOU QI · Nicha Dvornek · Julia Schnabel · Judy Wawira · Yifan Peng · Ronald Summers · Alan Karthikesalingam · Lei Xing · Eric Xing -
2021 Poster: Explaining Time Series Predictions with Dynamic Masks »
Jonathan Crabbé · Mihaela van der Schaar -
2021 Spotlight: Explaining Time Series Predictions with Dynamic Masks »
Jonathan Crabbé · Mihaela van der Schaar -
2021 Poster: Barlow Twins: Self-Supervised Learning via Redundancy Reduction »
Jure Zbontar · Li Jing · Ishan Misra · yann lecun · Stephane Deny -
2021 Spotlight: Barlow Twins: Self-Supervised Learning via Redundancy Reduction »
Jure Zbontar · Li Jing · Ishan Misra · yann lecun · Stephane Deny -
2021 Poster: Policy Analysis using Synthetic Controls in Continuous-Time »
Alexis Bellot · Mihaela van der Schaar -
2021 Spotlight: Policy Analysis using Synthetic Controls in Continuous-Time »
Alexis Bellot · Mihaela van der Schaar -
2021 Poster: Learning Queueing Policies for Organ Transplantation Allocation using Interpretable Counterfactual Survival Analysis »
Jeroen Berrevoets · Ahmed Alaa · Zhaozhi Qian · James Jordon · alexander gimson · Mihaela van der Schaar -
2021 Spotlight: Learning Queueing Policies for Organ Transplantation Allocation using Interpretable Counterfactual Survival Analysis »
Jeroen Berrevoets · Ahmed Alaa · Zhaozhi Qian · James Jordon · alexander gimson · Mihaela van der Schaar -
2021 Poster: Inverse Decision Modeling: Learning Interpretable Representations of Behavior »
Daniel Jarrett · Alihan Hüyük · Mihaela van der Schaar -
2021 Oral: Inverse Decision Modeling: Learning Interpretable Representations of Behavior »
Daniel Jarrett · Alihan Hüyük · Mihaela van der Schaar -
2021 Poster: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2021 Spotlight: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2021 Tutorial: Synthetic Healthcare Data Generation and Assessment: Challenges, Methods, and Impact on Machine Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2021 : Synthetic Healthcare Data Generation and Assessment: Challenges, Methods, and Impact on Machine Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2020 : Panel Discussion »
Neil Lawrence · Mihaela van der Schaar · Alex Smola · Valerio Perrone · Jack Parker-Holder · Zhengying Liu -
2020 : "Automated ML and its transformative impact on medicine and healthcare" by Mihaela van der Schaar »
Mihaela van der Schaar -
2020 : Invited Talk: Learning despite the unknown - missing data imputation in healthcare »
Mihaela van der Schaar -
2020 Poster: Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift »
Alexander Chan · Ahmed Alaa · Zhaozhi Qian · Mihaela van der Schaar -
2020 Poster: Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Time Series Deconfounder: Estimating Treatment Effects over Time in the Presence of Hidden Confounders »
Ioana Bica · Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Temporal Phenotyping using Deep Predictive Clustering of Disease Progression »
Changhee Lee · Mihaela van der Schaar -
2020 Poster: Learning for Dose Allocation in Adaptive Clinical Trials with Safety Constraints »
Cong Shen · Zhiyang Wang · Sofia Villar · Mihaela van der Schaar -
2020 Poster: Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2020 Poster: Inverse Active Sensing: Modeling and Understanding Timely Decision-Making »
Daniel Jarrett · Mihaela van der Schaar -
2020 Tutorial: Machine Learning for Healthcare: Challenges, Methods, Frontiers »
Mihaela van der Schaar -
2019 : Embodied language grounding »
Katerina Fragkiadaki -
2019 Workshop: Adaptive and Multitask Learning: Algorithms & Systems »
Maruan Al-Shedivat · Anthony Platanios · Otilia Stretcu · Jacob Andreas · Ameet Talwalkar · Rich Caruana · Tom Mitchell · Eric Xing -
2019 Workshop: Learning and Reasoning with Graph-Structured Representations »
Ethan Fetaya · Zhiting Hu · Thomas Kipf · Yujia Li · Xiaodan Liang · Renjie Liao · Raquel Urtasun · Hao Wang · Max Welling · Eric Xing · Richard Zemel -
2019 Poster: Theoretically Principled Trade-off between Robustness and Accuracy »
Hongyang Zhang · Yaodong Yu · Jiantao Jiao · Eric Xing · Laurent El Ghaoui · Michael Jordan -
2019 Oral: Theoretically Principled Trade-off between Robustness and Accuracy »
Hongyang Zhang · Yaodong Yu · Jiantao Jiao · Eric Xing · Laurent El Ghaoui · Michael Jordan -
2019 Poster: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2019 Oral: Validating Causal Inference Models via Influence Functions »
Ahmed Alaa · Mihaela van der Schaar -
2018 Poster: Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis »
Pengtao Xie · Wei Wu · Yichen Zhu · Eric Xing -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Oral: Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis »
Pengtao Xie · Wei Wu · Yichen Zhu · Eric Xing -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Poster: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2018 Oral: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2018 Oral: AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Poster: Nonoverlap-Promoting Variable Selection »
Pengtao Xie · Hongbao Zhang · Yichen Zhu · Eric Xing -
2018 Poster: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Poster: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2018 Poster: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design »
Ahmed M. Alaa · Mihaela van der Schaar -
2018 Oral: Nonoverlap-Promoting Variable Selection »
Pengtao Xie · Hongbao Zhang · Yichen Zhu · Eric Xing -
2018 Oral: DiCE: The Infinitely Differentiable Monte Carlo Estimator »
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson -
2017 Poster: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa · Scott B Hu · Mihaela van der Schaar -
2017 Poster: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Talk: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Talk: Learning from Clinical Judgments: Semi-Markov-Modulated Marked Hawkes Processes for Risk Prognosis »
Ahmed M. Alaa · Scott B Hu · Mihaela van der Schaar -
2017 Poster: Uncorrelation and Evenness: a New Diversity-Promoting Regularizer »
Pengtao Xie · Aarti Singh · Eric Xing -
2017 Poster: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Uncorrelation and Evenness: a New Diversity-Promoting Regularizer »
Pengtao Xie · Aarti Singh · Eric Xing -
2017 Poster: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Poster: Post-Inference Prior Swapping »
Willie Neiswanger · Eric Xing -
2017 Talk: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Talk: Post-Inference Prior Swapping »
Willie Neiswanger · Eric Xing