Timezone: »
Despite years of progress in the field of Interpretable Machine Learning (IML), a significant gap persists between the technical objectives targeted by researchers' methods and the high-level goals stated as consumers' use cases. To address this gap, we argue for the IML community to embrace a diagnostic vision for the field. Instead of viewing IML methods as a panacea for a variety of overly broad use cases, we emphasize the need to systematically connect IML methods to narrower --yet better defined-- target use cases. To formalize this vision, we propose a taxonomy including both methods and use cases, helping to conceptualize the current gaps between the two. Then, to connect these two sides, we describe a three-step workflow to enable researchers and consumers to define and validate IML methods as useful diagnostics. Eventually, by applying this workflow, a more complete version of the taxonomy will allow consumers to find relevant methods for their target use cases and researchers to identify motivating use cases for their proposed methods.
Author Information
Valerie Chen (Carnegie Mellon University)
Jeffrey Li (University of Washington)
Joon Kim (Carnegie Mellon University)
Gregory Plumb (Carnegie Mellon University)
Ameet Talwalkar (Carnegie Mellon University)
More from the Same Authors
-
2022 : SimpleSpot and Evaluating Systemic Errors using Synthetic Image Datasets »
Gregory Plumb · Nari Johnson · Ángel Alexander Cabrera · Marco Ribeiro · Ameet Talwalkar -
2022 : Perspectives on Incorporating Expert Feedback into Model Updates »
Valerie Chen · Umang Bhatt · Hoda Heidari · Adrian Weller · Ameet Talwalkar -
2023 Poster: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2023 Oral: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2022 Poster: Sanity Simulations for Saliency Methods »
Joon Kim · Gregory Plumb · Ameet Talwalkar -
2022 Spotlight: Sanity Simulations for Saliency Methods »
Joon Kim · Gregory Plumb · Ameet Talwalkar -
2021 : Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing (Q&A) »
Ameet Talwalkar -
2021 : Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Ameet Talwalkar -
2020 Poster: FACT: A Diagnostic for Group Fairness Trade-offs »
Joon Kim · Jiahao Chen · Ameet Talwalkar -
2020 Poster: Explaining Groups of Points in Low-Dimensional Representations »
Gregory Plumb · Jonathan Terhorst · Sriram Sankararaman · Ameet Talwalkar -
2019 : ARUBA: Efficient and Adaptive Meta-Learning with Provable Guarantees (Ameet Talwalkar) »
Ameet Talwalkar -
2019 Workshop: Adaptive and Multitask Learning: Algorithms & Systems »
Maruan Al-Shedivat · Anthony Platanios · Otilia Stretcu · Jacob Andreas · Ameet Talwalkar · Rich Caruana · Tom Mitchell · Eric Xing -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Provable Guarantees for Gradient-Based Meta-Learning »
Nina Balcan · Mikhail Khodak · Ameet Talwalkar -
2019 Oral: Provable Guarantees for Gradient-Based Meta-Learning »
Nina Balcan · Mikhail Khodak · Ameet Talwalkar