Timezone: »
Assessing the effects of deploying a policy based on retrospective data collected from a different policy is a common problem across several high-stake decision making domains. A number of off-policy evaluation (OPE) techniques have been proposed for this purpose with different bias-variance tradeoffs. However, these methods largely formulate OPE as a problem disassociated from the process used to generate the data. Posing OPE instead as a causal estimand has strong implications ranging from our fundamental understanding of the complexity of the OPE problem to which methods we apply in practice, and can help highlight gaps in existing literature in terms of the overall objective of OPE. Many formalisms of OPE additionally overlook the role of uncertainty entirely in the estimation process, which can significantly bias the estimation of counterfactuals and produce large errors in OPE as a result. Finally, depending on how we formalise OPE, human expertise can be particularly helpful in assessing the validity of OPE estimates or improving estimation from a finite number of samples to achieve certain efficiency guarantees. In this position paper, we discuss each of these issues in terms of the role they play on OPE. Importantly, each of these aspects may be viewed as a means of assessing the validity of various other common assumptions made in causal inference.
Author Information
Sonali Parbhoo (Harvard University)
Shalmali Joshi (Harvard University (SEAS))
Finale Doshi-Velez (Harvard University)

Finale Doshi-Velez is a Gordon McKay Professor in Computer Science at the Harvard Paulson School of Engineering and Applied Sciences. She completed her MSc from the University of Cambridge as a Marshall Scholar, her PhD from MIT, and her postdoc at Harvard Medical School. Her interests lie at the intersection of machine learning, healthcare, and interpretability. Selected Additional Shinies: BECA recipient, AFOSR YIP and NSF CAREER recipient; Sloan Fellow; IEEE AI Top 10 to Watch
More from the Same Authors
-
2021 : On the Connections between Counterfactual Explanations and Adversarial Examples »
· Martin Pawelczyk · Shalmali Joshi · Chirag Agarwal · Sohini Upadhyay · Hima Lakkaraju -
2021 : Promises and Pitfalls of Black-Box Concept Learning Models »
· Anita Mahinpei · Justin Clark · Isaac Lage · Finale Doshi-Velez · Weiwei Pan -
2021 : On the Connections between Counterfactual Explanations and Adversarial Examples »
Martin Pawelczyk · Shalmali Joshi · Chirag Agarwal · Sohini Upadhyay · Hima Lakkaraju -
2021 : Towards Robust and Reliable Algorithmic Recourse »
Sohini Upadhyay · Shalmali Joshi · Hima Lakkaraju -
2021 : Prediction-focused Mixture Models »
Abhishek Sharma · Sanjana Narayanan · Catherine Zeng · Finale Doshi-Velez -
2021 : Online structural kernel selection for mobile health »
Eura Shin · Predag Klasnja · Susan Murphy · Finale Doshi-Velez -
2021 : Interpretable learning-to-defer for sequential decision-making »
Shalmali Joshi · Sonali Parbhoo · Finale Doshi-Velez -
2021 : Interpretable learning-to-defer for sequential decision-making »
Shalmali Joshi · Sonali Parbhoo · Finale Doshi-Velez -
2022 : "Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts »
Haoran Zhang · Harvineet Singh · Shalmali Joshi -
2022 : Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare »
Shengpu Tang · Maggie Makar · Michael Sjoding · Finale Doshi-Velez · Jenna Wiens -
2022 : From Soft Trees to Hard Trees: Gains and Losses »
Xin Zeng · Jiayu Yao · Finale Doshi-Velez · Weiwei Pan -
2022 : Success of Uncertainty-Aware Deep Models Depends on Data Manifold Geometry »
Mark Penrod · Harrison Termotto · Varshini Reddy · Jiayu Yao · Finale Doshi-Velez · Weiwei Pan -
2023 Poster: The Unintended Consequences of Discount Regularization: Improving Regularization in Certainty Equivalence Reinforcement Learning »
Sarah Rathnam · Sonali Parbhoo · Weiwei Pan · Susan Murphy · Finale Doshi-Velez -
2023 Poster: Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables »
Yaniv Yacoby · Weiwei Pan · Finale Doshi-Velez -
2022 : Responsible Decision-Making in Batch RL Settings »
Finale Doshi-Velez -
2021 : Invited Speakers' Panel »
Neeraja J Yadwadkar · Shalmali Joshi · Roberto Bondesan · Engineer Bainomugisha · Stephen Roberts -
2021 : Ethics of developing ML in healthcare »
Shalmali Joshi -
2021 : RL Explainability & Interpretability Panel »
Ofra Amir · Finale Doshi-Velez · Alan Fern · Zachary Lipton · Omer Gottesman · Niranjani Prasad -
2021 : [01:50 - 02:35 PM UTC] Invited Talk 3: Interpretability in High Dimensions: Concept Bottlenecks and Beyond »
Finale Doshi-Velez -
2021 Poster: Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement »
Andrew Ross · Finale Doshi-Velez -
2021 Oral: Benchmarks, Algorithms, and Metrics for Hierarchical Disentanglement »
Andrew Ross · Finale Doshi-Velez -
2021 Poster: State Relevance for Off-Policy Evaluation »
Simon Shen · Yecheng Jason Ma · Omer Gottesman · Finale Doshi-Velez -
2021 Spotlight: State Relevance for Off-Policy Evaluation »
Simon Shen · Yecheng Jason Ma · Omer Gottesman · Finale Doshi-Velez -
2020 : Keynote #2 Finale Doshi-Velez »
Finale Doshi-Velez -
2020 Poster: Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions »
Omer Gottesman · Joseph Futoma · Yao Liu · Sonali Parbhoo · Leo Celi · Emma Brunskill · Finale Doshi-Velez -
2019 Poster: Combining parametric and nonparametric models for off-policy evaluation »
Omer Gottesman · Yao Liu · Scott Sussex · Emma Brunskill · Finale Doshi-Velez -
2019 Oral: Combining parametric and nonparametric models for off-policy evaluation »
Omer Gottesman · Yao Liu · Scott Sussex · Emma Brunskill · Finale Doshi-Velez -
2018 Poster: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2018 Poster: Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors »
Soumya Ghosh · Jiayu Yao · Finale Doshi-Velez -
2018 Oral: Structured Variational Learning of Bayesian Neural Networks with Horseshoe Priors »
Soumya Ghosh · Jiayu Yao · Finale Doshi-Velez -
2018 Oral: Decomposition of Uncertainty in Bayesian Deep Learning for Efficient and Risk-sensitive Learning »
Stefan Depeweg · Jose Miguel Hernandez-Lobato · Finale Doshi-Velez · Steffen Udluft -
2017 Tutorial: Interpretable Machine Learning »
Been Kim · Finale Doshi-Velez