Timezone: »
Estimation of causal effects involves crucial assumptions about the data-generating process, such as directionality of effect, presence of instrumental variables or mediators, and whether all relevant confounders are observed. Violation of any of these assumptions leads to significant error in the effect estimate. However, unlike cross-validation for predictive models, there is no global validator method for a causal estimate. As a result, expressing different causal assumptions formally and validating them (to the extent possible) becomes critical for any analysis. We present DoWhy, a framework that allows explicit declaration of assumptions through a causal graph and provides multiple validation tests to check a subset of these assumptions. Our experience with DoWhy highlights a number of open questions for future research: developing new ways beyond causal graphs to express assumptions, the role of causal discovery in learning relevant parts of the graph, and developing validation tests that can better detect errors, both for average and conditional treatment effects. DoWhy is available at https://github.com/microsoft/dowhy.
Author Information
Amit Sharma (Microsoft Research)
Vasilis Syrgkanis (Microsoft Research)
cheng zhang (micorosft research)
Emre Kiciman (Microsoft Research)
More from the Same Authors
-
2020 : Contributed Talk: Incentivizing Bandit Exploration:Recommendations as Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2022 : Adversarial Estimation of Riesz Representers »
Victor Chernozhukov · Whitney Newey · Rahul Singh · Vasilis Syrgkanis -
2022 : Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization »
JIVAT NEET KAUR · Emre Kiciman · Amit Sharma -
2022 : Probing Classifiers are Unreliable for Concept Removal and Detection »
Abhinav Kumar · Chenhao Tan · Amit Sharma -
2023 : Towards Modular Machine Learning Pipelines »
Aditya Modi · JIVAT NEET KAUR · Maggie Makar · Pavan Mallapragada · Amit Sharma · Emre Kiciman · Adith Swaminathan -
2022 Poster: RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests »
Victor Chernozhukov · Whitney Newey · Víctor Quintas-Martínez · Vasilis Syrgkanis -
2022 Oral: RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests »
Victor Chernozhukov · Whitney Newey · Víctor Quintas-Martínez · Vasilis Syrgkanis -
2022 Poster: Matching Learned Causal Effects of Neural Networks with Domain Priors »
Sai Srinivas Kancheti · Gowtham Reddy Abbavaram · Vineeth N Balasubramanian · Amit Sharma -
2022 Spotlight: Matching Learned Causal Effects of Neural Networks with Domain Priors »
Sai Srinivas Kancheti · Gowtham Reddy Abbavaram · Vineeth N Balasubramanian · Amit Sharma -
2021 Poster: Domain Generalization using Causal Matching »
Divyat Mahajan · Shruti Tople · Amit Sharma -
2021 Oral: Domain Generalization using Causal Matching »
Divyat Mahajan · Shruti Tople · Amit Sharma -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2020 Poster: Alleviating Privacy Attacks via Causal Learning »
Shruti Tople · Amit Sharma · Aditya Nori -
2019 Poster: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2019 Oral: Orthogonal Random Forest for Causal Inference »
Miruna Oprescu · Vasilis Syrgkanis · Steven Wu -
2018 Poster: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Poster: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis -
2018 Poster: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Oral: Accurate Inference for Adaptive Linear Models »
Yash Deshpande · Lester Mackey · Vasilis Syrgkanis · Matt Taddy -
2018 Oral: Orthogonal Machine Learning: Power and Limitations »
Ilias Zadik · Lester Mackey · Vasilis Syrgkanis -
2018 Oral: Semiparametric Contextual Bandits »
Akshay Krishnamurthy · Steven Wu · Vasilis Syrgkanis