Timezone: »
We examine interval estimation of the effect of a treatment T on an outcome Y given the existence of an unobserved confounder U. Using Hölder's inequality, we derive a set of bounds on the confounding bias |E[Y|T=t]-E[Y|do(T=t)]| based on the degree of unmeasured confounding (i.e., the strength of the connection U->T, and the strength of U->Y). These bounds are tight either when U⊥T or U⊥Y | T (when there is no unobserved confounding). We focus on a special case of this bound depending on the total variation distance between the distributions p(U) and p(U|T=t), as well as the maximum (over all possible values of U) deviation of the conditional expected outcome E[Y|U=u,T=t] from the average expected outcome E[Y|T=t]. We discuss possible calibration strategies for this bound to get interval estimates for treatment effects, and experimentally validate the bound using synthetic and semi-synthetic datasets.
Author Information
Serge Assaad (Duke University)
Shuxi Zeng (Duke University)
Henry Pfister (Duke University)
Fan Li (Duke University)
Lawrence Carin (Duke)
More from the Same Authors
-
2020 Poster: Learning Autoencoders with Relational Regularization »
Hongteng Xu · Dixin Luo · Ricardo Henao · Svati Shah · Lawrence Carin -
2020 Poster: Graph Optimal Transport for Cross-Domain Alignment »
Liqun Chen · Zhe Gan · Yu Cheng · Linjie Li · Lawrence Carin · Jingjing Liu -
2020 Poster: On Leveraging Pretrained GANs for Generation with Limited Data »
Miaoyun Zhao · Yulai Cong · Lawrence Carin -
2020 Poster: CLUB: A Contrastive Log-ratio Upper Bound of Mutual Information »
Pengyu Cheng · Weituo Hao · Shuyang Dai · Jiachang Liu · Zhe Gan · Lawrence Carin -
2019 Poster: Gromov-Wasserstein Learning for Graph Matching and Node Embedding »
Hongteng Xu · Dixin Luo · Hongyuan Zha · Lawrence Carin -
2019 Oral: Gromov-Wasserstein Learning for Graph Matching and Node Embedding »
Hongteng Xu · Dixin Luo · Hongyuan Zha · Lawrence Carin -
2019 Poster: Stochastic Blockmodels meet Graph Neural Networks »
Nikhil Mehta · Lawrence Carin · Piyush Rai -
2019 Poster: Variational Annealing of GANs: A Langevin Perspective »
Chenyang Tao · Shuyang Dai · Liqun Chen · Ke Bai · Junya Chen · Chang Liu · RUIYI (ROY) ZHANG · Georgiy Bobashev · Lawrence Carin -
2019 Oral: Stochastic Blockmodels meet Graph Neural Networks »
Nikhil Mehta · Lawrence Carin · Piyush Rai -
2019 Oral: Variational Annealing of GANs: A Langevin Perspective »
Chenyang Tao · Shuyang Dai · Liqun Chen · Ke Bai · Junya Chen · Chang Liu · RUIYI (ROY) ZHANG · Georgiy Bobashev · Lawrence Carin -
2018 Poster: Learning Registered Point Processes from Idiosyncratic Observations »
Hongteng Xu · Lawrence Carin · Hongyuan Zha -
2018 Poster: Policy Optimization as Wasserstein Gradient Flows »
RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin -
2018 Poster: JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets »
Yunchen Pu · Shuyang Dai · Zhe Gan · Weiyao Wang · Guoyin Wang · Yizhe Zhang · Ricardo Henao · Lawrence Carin -
2018 Oral: Policy Optimization as Wasserstein Gradient Flows »
RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin -
2018 Oral: JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets »
Yunchen Pu · Shuyang Dai · Zhe Gan · Weiyao Wang · Guoyin Wang · Yizhe Zhang · Ricardo Henao · Lawrence Carin -
2018 Oral: Learning Registered Point Processes from Idiosyncratic Observations »
Hongteng Xu · Lawrence Carin · Hongyuan Zha -
2018 Poster: Adversarial Time-to-Event Modeling »
Paidamoyo Chapfuwa · Chenyang Tao · Chunyuan Li · Courtney Page · Benjamin Goldstein · Lawrence Carin · Ricardo Henao -
2018 Oral: Adversarial Time-to-Event Modeling »
Paidamoyo Chapfuwa · Chenyang Tao · Chunyuan Li · Courtney Page · Benjamin Goldstein · Lawrence Carin · Ricardo Henao -
2018 Poster: Continuous-Time Flows for Efficient Inference and Density Estimation »
Changyou Chen · Chunyuan Li · Liquan Chen · Wenlin Wang · Yunchen Pu · Lawrence Carin -
2018 Poster: Chi-square Generative Adversarial Network »
Chenyang Tao · Liqun Chen · Ricardo Henao · Jianfeng Feng · Lawrence Carin -
2018 Poster: Variational Inference and Model Selection with Generalized Evidence Bounds »
Liqun Chen · Chenyang Tao · RUIYI (ROY) ZHANG · Ricardo Henao · Lawrence Carin -
2018 Oral: Chi-square Generative Adversarial Network »
Chenyang Tao · Liqun Chen · Ricardo Henao · Jianfeng Feng · Lawrence Carin -
2018 Oral: Continuous-Time Flows for Efficient Inference and Density Estimation »
Changyou Chen · Chunyuan Li · Liquan Chen · Wenlin Wang · Yunchen Pu · Lawrence Carin -
2018 Oral: Variational Inference and Model Selection with Generalized Evidence Bounds »
Liqun Chen · Chenyang Tao · RUIYI (ROY) ZHANG · Ricardo Henao · Lawrence Carin -
2017 Poster: Stochastic Gradient Monomial Gamma Sampler »
Yizhe Zhang · Changyou Chen · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Adversarial Feature Matching for Text Generation »
Yizhe Zhang · Zhe Gan · Kai Fan · Zhi Chen · Ricardo Henao · Dinghan Shen · Lawrence Carin -
2017 Talk: Adversarial Feature Matching for Text Generation »
Yizhe Zhang · Zhe Gan · Kai Fan · Zhi Chen · Ricardo Henao · Dinghan Shen · Lawrence Carin -
2017 Talk: Stochastic Gradient Monomial Gamma Sampler »
Yizhe Zhang · Changyou Chen · Zhe Gan · Ricardo Henao · Lawrence Carin -
2017 Poster: Deep Generative Models for Relational Data with Side Information »
Changwei Hu · Piyush Rai · Lawrence Carin -
2017 Talk: Deep Generative Models for Relational Data with Side Information »
Changwei Hu · Piyush Rai · Lawrence Carin