Timezone: »
This paper studies Imitation Learning from Observations alone (ILFO) where the learner is presented with expert demonstrations that consist only of states visited by an expert (without access to actions taken by the expert). We present a provably efficient model-based framework MobILE to solve the ILFO problem. MobILE involves carefully trading off strategic exploration against imitation - this is achieved by integrating the idea of optimism in the face of uncertainty into the distribution matching imitation learning (IL) framework. We provide a unified analysis for MobILE, and demonstrate that MobILE enjoys strong performance guarantees for classes of MDP dynamics that satisfy certain well studied notions of structural complexity. We also show that the ILFO problem is strictly harder than the standard IL problem by presenting an exponential sample complexity separation between IL and ILFO. We complement these theoretical results with experimental simulations on benchmark OpenAI Gym tasks that indicate the efficacy of MobILE.
Author Information
Rahul Kidambi (Amazon Search & AI)
Jonathan Chang (Cornell University)
Wen Sun (Cornell University)
More from the Same Authors
-
2021 : Corruption Robust Offline Reinforcement Learning »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 : Mitigating Covariate Shift in Imitation Learning via Offline Data Without Great Coverage »
Jonathan Chang · Masatoshi Uehara · Dhruv Sreenivas · Rahul Kidambi · Wen Sun -
2023 : Representation Learning in Low-rank Slate-based Recommender Systems »
Yijia Dai · Wen Sun -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : Contextual Bandits and Imitation Learning with Preference-Based Active Queries »
Ayush Sekhari · Karthik Sridharan · Wen Sun · Runzhe Wu -
2023 : Selective Sampling and Imitation Learning via Online Regression »
Ayush Sekhari · Karthik Sridharan · Wen Sun · Runzhe Wu -
2023 : Provable Offline Reinforcement Learning with Human Feedback »
Wenhao Zhan · Masatoshi Uehara · Nathan Kallus · Jason Lee · Wen Sun -
2023 : How to Query Human Feedback Efficiently in RL? »
Wenhao Zhan · Masatoshi Uehara · Wen Sun · Jason Lee -
2023 : Contextual Bandits and Imitation Learning with Preference-Based Active Queries »
Ayush Sekhari · Karthik Sridharan · Wen Sun · Runzhe Wu -
2023 : How to Query Human Feedback Efficiently in RL? »
Wenhao Zhan · Masatoshi Uehara · Wen Sun · Jason Lee -
2023 Poster: Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR »
Kaiwen Wang · Nathan Kallus · Wen Sun -
2023 Poster: Multi-task Representation Learning for Pure Exploration in Linear Bandits »
Yihan Du · Longbo Huang · Wen Sun -
2023 Poster: Distributional Offline Policy Evaluation with Predictive Error Guarantees »
Runzhe Wu · Masatoshi Uehara · Wen Sun -
2023 Poster: Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2022 Poster: Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning approach »
Xuezhou Zhang · Yuda Song · Masatoshi Uehara · Mengdi Wang · Alekh Agarwal · Wen Sun -
2022 Poster: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2022 Spotlight: Efficient Reinforcement Learning in Block MDPs: A Model-free Representation Learning approach »
Xuezhou Zhang · Yuda Song · Masatoshi Uehara · Mengdi Wang · Alekh Agarwal · Wen Sun -
2022 Oral: Learning Bellman Complete Representations for Offline Policy Evaluation »
Jonathan Chang · Kaiwen Wang · Nathan Kallus · Wen Sun -
2021 Poster: Fairness of Exposure in Stochastic Bandits »
Luke Lequn Wang · Yiwei Bai · Wen Sun · Thorsten Joachims -
2021 Spotlight: Fairness of Exposure in Stochastic Bandits »
Luke Lequn Wang · Yiwei Bai · Wen Sun · Thorsten Joachims -
2021 Poster: Robust Policy Gradient against Strong Data Corruption »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 Poster: Top-k eXtreme Contextual Bandits with Arm Hierarchy »
Rajat Sen · Alexander Rakhlin · Lexing Ying · Rahul Kidambi · Dean Foster · Daniel Hill · Inderjit Dhillon -
2021 Poster: Making Paper Reviewing Robust to Bid Manipulation Attacks »
Ruihan Wu · Chuan Guo · Felix Wu · Rahul Kidambi · Laurens van der Maaten · Kilian Weinberger -
2021 Spotlight: Making Paper Reviewing Robust to Bid Manipulation Attacks »
Ruihan Wu · Chuan Guo · Felix Wu · Rahul Kidambi · Laurens van der Maaten · Kilian Weinberger -
2021 Spotlight: Top-k eXtreme Contextual Bandits with Arm Hierarchy »
Rajat Sen · Alexander Rakhlin · Lexing Ying · Rahul Kidambi · Dean Foster · Daniel Hill · Inderjit Dhillon -
2021 Spotlight: Robust Policy Gradient against Strong Data Corruption »
Xuezhou Zhang · Yiding Chen · Jerry Zhu · Wen Sun -
2021 Poster: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Oral: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Poster: PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided Exploration »
Yuda Song · Wen Sun -
2021 Spotlight: PC-MLP: Model-based Reinforcement Learning with Policy Cover Guided Exploration »
Yuda Song · Wen Sun