Timezone: »
Exploration in the absence of a concrete task is a key characteristic of autonomous agents and vital for the emergence of intelligent behaviour. Various intrinsic motivation frameworks have been suggested, such as novelty seeking, surprise maximisation or empowerment. Here we focus on the latter, empowerment, an agent-centric and information-theoretic measure of an agent's perceived influence on the world. By considering improving one's empowerment estimator - we call it empowerment gain (EG) - we derive a novel exploration criterion that focuses directly on the desired goal: exploration in order to help the agent recognise its capability to interact with the world. We propose a new theoretical framework based on improving a parametrised estimation of empowerment and show how it integrates novelty, surprise and learning progress into a single formulation. Empirically, we validate our theoretical findings on some simple but instructive grid world environments. We show that while such an agent is still novelty seeking, i.e. interested in exploring the whole state space, it focuses on exploration where its perceived influence is greater, avoiding areas of greater stochasticity or traps that limit its control.
Author Information
Philip Becker-Ehmck (Machine Learning Research Lab, Volkswagen Group)
Maximilian Karl (Data Lab, Volkswagen Group)
Jan Peters (TU Darmstadt)
Patrick van der Smagt (Volkswagen Group)
More from the Same Authors
-
2022 : Probabilistic Dalek - Emulator framework with probabilistic prediction for supernova tomography »
Wolfgang Kerzendorf · Nutan Chen · Patrick van der Smagt -
2023 : Parameterized projected Bellman operator »
Théo Vincent · Alberto Maria Metelli · Jan Peters · Marcello Restelli · Carlo D'Eramo -
2022 : Local distance preserving autoencoders using continuous kNN graphs »
Nutan Chen · Patrick van der Smagt · Botond Cseke -
2022 Poster: Curriculum Reinforcement Learning via Constrained Optimal Transport »
Pascal Klink · Haoyi Yang · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2022 Spotlight: Curriculum Reinforcement Learning via Constrained Optimal Transport »
Pascal Klink · Haoyi Yang · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2021 : RL + Robotics Panel »
George Konidaris · Jan Peters · Martin Riedmiller · Angela Schoellig · Rose Yu · Rupam Mahmood -
2021 Poster: Value Iteration in Continuous Actions, States and Time »
Michael Lutter · Shie Mannor · Jan Peters · Dieter Fox · Animesh Garg -
2021 Spotlight: Value Iteration in Continuous Actions, States and Time »
Michael Lutter · Shie Mannor · Jan Peters · Dieter Fox · Animesh Garg -
2021 Poster: Convex Regularization in Monte-Carlo Tree Search »
Tuan Q Dam · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2021 Spotlight: Convex Regularization in Monte-Carlo Tree Search »
Tuan Q Dam · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2020 Poster: Learning Flat Latent Manifolds with VAEs »
Nutan Chen · Alexej Klushyn · Francesco Ferroni · Justin Bayer · Patrick van der Smagt -
2019 Poster: Projections for Approximate Policy Iteration Algorithms »
Riad Akrour · Joni Pajarinen · Jan Peters · Gerhard Neumann -
2019 Oral: Projections for Approximate Policy Iteration Algorithms »
Riad Akrour · Joni Pajarinen · Jan Peters · Gerhard Neumann -
2019 Poster: Switching Linear Dynamics for Variational Bayes Filtering »
Philip Becker-Ehmck · Jan Peters · Patrick van der Smagt -
2019 Oral: Switching Linear Dynamics for Variational Bayes Filtering »
Philip Becker-Ehmck · Jan Peters · Patrick van der Smagt -
2018 Poster: PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos »
Paavo Parmas · Carl E Rasmussen · Jan Peters · Kenji Doya -
2018 Oral: PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos »
Paavo Parmas · Carl E Rasmussen · Jan Peters · Kenji Doya