Timezone: »
Improved Estimator Selection for Off-Policy Evaluation
George Tucker
Off-policy policy evaluation is a fundamental problem in reinforcement learning. As a result, many estimators with different tradeoffs have been developed, however, selecting the best estimator is challenging with limited data and without additional interactive data collection. Recently, Su et al. (2020) developed a data-dependent selection procedure that competes with the oracle selection up to a constant and demonstrate its practicality. We refine the analysis to remove an extraneous assumption and improve the procedure. The improved procedure results in a tighter oracle bound and stronger empirical results on a contextual bandit task.
Author Information
George Tucker (Google Brain)
More from the Same Authors
-
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2022 Poster: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2022 Spotlight: Model Selection in Batch Policy Optimization »
Jonathan Lee · George Tucker · Ofir Nachum · Bo Dai -
2021 : Value-Based Deep Reinforcement Learning Requires Explicit Regularization »
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine -
2019 Poster: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Poster: On Variational Bounds of Mutual Information »
Ben Poole · Sherjil Ozair · Aäron van den Oord · Alexander Alemi · George Tucker -
2019 Oral: Guided evolutionary strategies: augmenting random search with surrogate gradients »
Niru Maheswaranathan · Luke Metz · George Tucker · Dami Choi · Jascha Sohl-Dickstein -
2019 Oral: On Variational Bounds of Mutual Information »
Ben Poole · Sherjil Ozair · Aäron van den Oord · Alexander Alemi · George Tucker -
2018 Poster: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2018 Poster: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine -
2018 Oral: Smoothed Action Value Functions for Learning Gaussian Policies »
Ofir Nachum · Mohammad Norouzi · George Tucker · Dale Schuurmans -
2018 Oral: The Mirage of Action-Dependent Baselines in Reinforcement Learning »
George Tucker · Surya Bhupatiraju · Shixiang Gu · Richard E Turner · Zoubin Ghahramani · Sergey Levine