Timezone: »
Online Sub-Sampling for Reinforcement Learning with General Function Approximation
Dingwen Kong · Ruslan Salakhutdinov · Ruosong Wang · Lin Yang
Designing provably efficient algorithms with general function approximation is an important open problem in reinforcement learning. Recently, Wang et al.~[2020c] establish a value-based algorithm with general function approximation that enjoys $\widetilde{O}(\mathrm{poly}(dH)\sqrt{K})$\footnote{Throughout the paper, we use $\widetilde{O}(\cdot)$ to suppress logarithm factors. } regret bound, where $d$ depends on the complexity of the function class, $H$ is the planning horizon, and $K$ is the total number of episodes. However, their algorithm requires $\Omega(K)$ computation time per round, rendering the algorithm inefficient for practical use. In this paper, by applying online sub-sampling techniques, we develop an algorithm that takes $\widetilde{O}(\mathrm{poly}(dH))$ computation time per round on average, and enjoys nearly the same regret bound. Furthermore, the algorithm achieves low switching cost, i.e., it changes the policy only $\widetilde{O}(\mathrm{poly}(dH))$ times during its execution, making it appealing to be implemented in real-life scenarios. Moreover, by using an upper-confidence based exploration-driven reward function, the algorithm provably explores the environment in the reward-free setting. In particular, after $\widetilde{O}(\mathrm{poly}(dH))/\epsilon^2$ rounds of exploration, the algorithm outputs an $\epsilon$-optimal policy for any given reward function.
Author Information
Dingwen Kong (Peking University)
Ruslan Salakhutdinov (Carnegie Mellen University)
Ruosong Wang (Carnegie Mellon University)
Lin Yang (UCLA)
More from the Same Authors
-
2021 : Gap-Dependent Unsupervised Exploration for Reinforcement Learning »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2021 : Solving Multi-Arm Bandit Using a Few Bits of Communication »
Osama Hanna · Lin Yang · Christina Fragouli -
2022 : Provably Correct SGD-based Exploration for Linear Bandit »
Jialin Dong · Lin Yang -
2022 : Provably Feedback-Efficient Reinforcement Learning via Active Reward Learning »
Dingwen Kong · Lin Yang -
2023 : Plan, Eliminate, and Track --- Language Models are Good Teachers for Embodied Agents. »
Yue Wu · So Yeon Min · Yonatan Bisk · Ruslan Salakhutdinov · Amos Azaria · Yuanzhi Li · Tom Mitchell · Shrimai Prabhumoye -
2023 : SPRING: Studying Papers and Reasoning to play Games »
Yue Wu · Shrimai Prabhumoye · So Yeon Min · Yonatan Bisk · Ruslan Salakhutdinov · Amos Azaria · Tom Mitchell · Yuanzhi Li -
2023 Poster: Does Sparsity Help in Learning Misspecified Linear Bandits? »
Jialin Dong · Lin Yang -
2023 Poster: Graph Generative Model for Benchmarking Graph Neural Networks »
Minji Yoon · Yue Wu · John Palowitch · Bryan Perozzi · Ruslan Salakhutdinov -
2023 Poster: Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost »
Sanae Amani · Tor Lattimore · Andras Gyorgy · Lin Yang -
2023 Poster: Horizon-free Learning for Markov Decision Processes and Games: Stochastically Bounded Rewards and Improved Bounds »
Shengshi Li · Lin Yang -
2023 Poster: Low-Switching Policy Gradient with Exploration via Online Sensitivity Sampling »
Yunfan Li · Yiran Wang · Yu Cheng · Lin Yang -
2023 Poster: Horizon-Free and Variance-Dependent Reinforcement Learning for Latent Markov Decision Processes »
Runlong Zhou · Ruosong Wang · Simon Du -
2022 Poster: On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning »
Weichao Mao · Lin Yang · Kaiqing Zhang · Tamer Basar -
2022 Spotlight: On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning »
Weichao Mao · Lin Yang · Kaiqing Zhang · Tamer Basar -
2022 Poster: Recurrent Model-Free RL Can Be a Strong Baseline for Many POMDPs »
Tianwei Ni · Benjamin Eysenbach · Ruslan Salakhutdinov -
2022 Spotlight: Recurrent Model-Free RL Can Be a Strong Baseline for Many POMDPs »
Tianwei Ni · Benjamin Eysenbach · Ruslan Salakhutdinov -
2021 : Solving Multi-Arm Bandit Using a Few Bits of Communication »
Osama Hanna · Lin Yang · Christina Fragouli -
2021 Workshop: Workshop on Reinforcement Learning Theory »
Shipra Agrawal · Simon Du · Niao He · Csaba Szepesvari · Lin Yang -
2021 Poster: Towards Understanding and Mitigating Social Biases in Language Models »
Paul Liang · Chiyu Wu · LP Morency · Ruslan Salakhutdinov -
2021 Poster: Reasoning Over Virtual Knowledge Bases With Open Predicate Relations »
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen -
2021 Spotlight: Reasoning Over Virtual Knowledge Bases With Open Predicate Relations »
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen -
2021 Spotlight: Towards Understanding and Mitigating Social Biases in Language Models »
Paul Liang · Chiyu Wu · LP Morency · Ruslan Salakhutdinov -
2021 Poster: Provably Correct Optimization and Exploration with Non-linear Policies »
Fei Feng · Wotao Yin · Alekh Agarwal · Lin Yang -
2021 Poster: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Spotlight: Provably Correct Optimization and Exploration with Non-linear Policies »
Fei Feng · Wotao Yin · Alekh Agarwal · Lin Yang -
2021 Spotlight: Randomized Exploration in Reinforcement Learning with General Value Function Approximation »
Haque Ishfaq · Qiwen Cui · Viet Nguyen · Alex Ayoub · Zhuoran Yang · Zhaoran Wang · Doina Precup · Lin Yang -
2021 Poster: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Poster: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Spotlight: Instabilities of Offline RL with Pre-Trained Neural Representation »
Ruosong Wang · Yifan Wu · Ruslan Salakhutdinov · Sham Kakade -
2021 Oral: Bilinear Classes: A Structural Framework for Provable Generalization in RL »
Simon Du · Sham Kakade · Jason Lee · Shachar Lovett · Gaurav Mahajan · Wen Sun · Ruosong Wang -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Poster: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Poster: Safe Reinforcement Learning with Linear Function Approximation »
Sanae Amani · Christos Thrampoulidis · Lin Yang -
2021 Spotlight: On Proximal Policy Optimization's Heavy-tailed Gradients »
Saurabh Garg · Joshua Zhanson · Emilio Parisotto · Adarsh Prasad · Zico Kolter · Zachary Lipton · Sivaraman Balakrishnan · Ruslan Salakhutdinov · Pradeep Ravikumar -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Spotlight: Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning »
Yue Wu · Shuangfei Zhai · Nitish Srivastava · Joshua M Susskind · Jian Zhang · Ruslan Salakhutdinov · Hanlin Goh -
2021 Spotlight: Safe Reinforcement Learning with Linear Function Approximation »
Sanae Amani · Christos Thrampoulidis · Lin Yang -
2020 Workshop: Workshop on Learning in Artificial Open Worlds »
Arthur Szlam · Katja Hofmann · Ruslan Salakhutdinov · Noboru Kuno · William Guss · Kavya Srinet · Brandon Houghton -
2020 Workshop: Bridge Between Perception and Reasoning: Graph Neural Networks & Beyond »
Jian Tang · Le Song · Jure Leskovec · Renjie Liao · Yujia Li · Sanja Fidler · Richard Zemel · Ruslan Salakhutdinov -
2020 Poster: Reinforcement Learning in Feature Space: Matrix Bandit, Kernels, and Regret Bound »
Lin Yang · Mengdi Wang -
2020 Poster: Model-Based Reinforcement Learning with Value-Targeted Regression »
Alex Ayoub · Zeyu Jia · Csaba Szepesvari · Mengdi Wang · Lin Yang -
2020 Poster: Nearly Linear Row Sampling Algorithm for Quantile Regression »
Yi Li · Ruosong Wang · Lin Yang · Hanrui Zhang -
2020 Poster: Obtaining Adjustable Regularization for Free via Iterate Averaging »
Jingfeng Wu · Vladimir Braverman · Lin Yang -
2019 Poster: Dimensionality Reduction for Tukey Regression »
Kenneth Clarkson · Ruosong Wang · David Woodruff -
2019 Oral: Dimensionality Reduction for Tukey Regression »
Kenneth Clarkson · Ruosong Wang · David Woodruff -
2019 Poster: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang -
2019 Oral: Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Ruosong Wang -
2019 Talk: Opening Remarks »
Kamalika Chaudhuri · Ruslan Salakhutdinov -
2018 Poster: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Oral: Transformation Autoregressive Networks »
Junier Oliva · Kumar Avinava Dubey · Manzil Zaheer · Barnabás Póczos · Ruslan Salakhutdinov · Eric Xing · Jeff Schneider -
2018 Poster: Structured Control Nets for Deep Reinforcement Learning »
Mario Srouji · Jian Zhang · Ruslan Salakhutdinov -
2018 Poster: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2018 Oral: Structured Control Nets for Deep Reinforcement Learning »
Mario Srouji · Jian Zhang · Ruslan Salakhutdinov -
2018 Oral: Gated Path Planning Networks »
Lisa Lee · Emilio Parisotto · Devendra Singh Chaplot · Eric Xing · Ruslan Salakhutdinov -
2017 Poster: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing -
2017 Poster: Improved Variational Autoencoders for Text Modeling using Dilated Convolutions »
Zichao Yang · Zhiting Hu · Ruslan Salakhutdinov · Taylor Berg-Kirkpatrick -
2017 Talk: Improved Variational Autoencoders for Text Modeling using Dilated Convolutions »
Zichao Yang · Zhiting Hu · Ruslan Salakhutdinov · Taylor Berg-Kirkpatrick -
2017 Talk: Toward Controlled Generation of Text »
Zhiting Hu · Zichao Yang · Xiaodan Liang · Ruslan Salakhutdinov · Eric Xing