Timezone: »
Marginalized Operators for Off-Policy Reinforcement Learning
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko
In this work, we propose marginalized operators, a new class of off-policy evaluation operators for reinforcement learning. Marginalized operators strictly generalize generic multi-step operators, such as Retrace, as special cases. Marginalized operators also suggest a form of sample-based estimates with potential variance reduction, compared to sample-based estimates of the original multi-step operators. We show that the estimates for marginalized operators can be computed in a scalable way, which also generalizes prior results on marginalized importance sampling as special cases.
Author Information
Yunhao Tang (Columbia University)
Mark Rowland (DeepMind)
Remi Munos (DeepMind)
Michal Valko (DeepMind / Inria / ENS Paris-Saclay)
More from the Same Authors
-
2021 : Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret »
Jean Tarbouriech · Jean Tarbouriech · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric -
2021 : Density-Based Bonuses on Learned Representations for Reward-Free Exploration in Deep Reinforcement Learning »
Omar Darwiche Domingues · Corentin Tallec · Remi Munos · Michal Valko -
2022 Poster: Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning »
Yunhao Tang -
2022 Spotlight: Biased Gradient Estimate with Drastic Variance Reduction for Meta Reinforcement Learning »
Yunhao Tang -
2022 Poster: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre MENARD -
2022 Oral: From Dirichlet to Rubin: Optimistic Exploration in RL without Bonuses »
Daniil Tiapkin · Denis Belomestny · Eric Moulines · Alexey Naumov · Sergey Samsonov · Yunhao Tang · Michal Valko · Pierre MENARD -
2022 Poster: Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2022 Spotlight: Scaling Gaussian Process Optimization by Evaluating a Few Unique Candidates Multiple Times »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Poster: Learning Dynamics and Generalization in Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Spotlight: Learning Dynamics and Generalization in Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Poster: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2022 Oral: Generalised Policy Improvement with Geometric Policy Composition »
Shantanu Thakoor · Mark Rowland · Diana Borsa · Will Dabney · Remi Munos · Andre Barreto -
2021 Poster: Fast active learning for pure exploration in reinforcement learning »
Pierre MENARD · Omar Darwiche Domingues · Anders Jonsson · Emilie Kaufmann · Edouard Leurent · Michal Valko -
2021 Poster: UCB Momentum Q-learning: Correcting the bias without forgetting »
Pierre MENARD · Omar Darwiche Domingues · Xuedong Shang · Michal Valko -
2021 Spotlight: Fast active learning for pure exploration in reinforcement learning »
Pierre MENARD · Omar Darwiche Domingues · Anders Jonsson · Emilie Kaufmann · Edouard Leurent · Michal Valko -
2021 Oral: UCB Momentum Q-learning: Correcting the bias without forgetting »
Pierre MENARD · Omar Darwiche Domingues · Xuedong Shang · Michal Valko -
2021 Poster: Kernel-Based Reinforcement Learning: A Finite-Time Analysis »
Omar Darwiche Domingues · Pierre Menard · Matteo Pirotta · Emilie Kaufmann · Michal Valko -
2021 Poster: Online A-Optimal Design and Active Linear Regression »
Xavier Fontaine · Pierre Perrault · Michal Valko · Vianney Perchet -
2021 Spotlight: Kernel-Based Reinforcement Learning: A Finite-Time Analysis »
Omar Darwiche Domingues · Pierre Menard · Matteo Pirotta · Emilie Kaufmann · Michal Valko -
2021 Spotlight: Online A-Optimal Design and Active Linear Regression »
Xavier Fontaine · Pierre Perrault · Michal Valko · Vianney Perchet -
2021 Poster: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Poster: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2021 Poster: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Taylor Expansion of Discount Factors »
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko -
2021 Spotlight: Revisiting Peng's Q($\lambda$) for Modern Reinforcement Learning »
Tadashi Kozuno · Yunhao Tang · Mark Rowland · Remi Munos · Steven Kapturowski · Will Dabney · Michal Valko · David Abel -
2021 Spotlight: From Poincaré Recurrence to Convergence in Imperfect Information Games: Finding Equilibrium via Regularization »
Julien Perolat · Remi Munos · Jean-Baptiste Lespiau · Shayegan Omidshafiei · Mark Rowland · Pedro Ortega · Neil Burch · Thomas Anthony · David Balduzzi · Bart De Vylder · Georgios Piliouras · Marc Lanctot · Karl Tuyls -
2021 Poster: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2021 Spotlight: Counterfactual Credit Assignment in Model-Free Reinforcement Learning »
Thomas Mesnard · Theophane Weber · Fabio Viola · Shantanu Thakoor · Alaa Saade · Anna Harutyunyan · Will Dabney · Thomas Stepleton · Nicolas Heess · Arthur Guez · Eric Moulines · Marcus Hutter · Lars Buesing · Remi Munos -
2020 Poster: Monte-Carlo Tree Search as Regularized Policy Optimization »
Jean-Bastien Grill · Florent Altché · Yunhao Tang · Thomas Hubert · Michal Valko · Ioannis Antonoglou · Remi Munos -
2020 Poster: Improved Sleeping Bandits with Stochastic Action Sets and Adversarial Rewards »
Aadirupa Saha · Pierre Gaillard · Michal Valko -
2020 Poster: Gamification of Pure Exploration for Linear Bandits »
Rémy Degenne · Pierre Menard · Xuedong Shang · Michal Valko -
2020 Poster: Revisiting Fundamentals of Experience Replay »
William Fedus · Prajit Ramachandran · Rishabh Agarwal · Yoshua Bengio · Hugo Larochelle · Mark Rowland · Will Dabney -
2020 Poster: Stochastic bandits with arm-dependent delays »
Anne Gael Manegueu · Claire Vernade · Alexandra Carpentier · Michal Valko -
2020 Poster: Fast computation of Nash Equilibria in Imperfect Information Games »
Remi Munos · Julien Perolat · Jean-Baptiste Lespiau · Mark Rowland · Bart De Vylder · Marc Lanctot · Finbarr Timbers · Daniel Hennes · Shayegan Omidshafiei · Audrunas Gruslys · Mohammad Gheshlaghi Azar · Edward Lockhart · Karl Tuyls -
2020 Poster: Learning to Score Behaviors for Guided Policy Optimization »
Aldo Pacchiano · Jack Parker-Holder · Yunhao Tang · Krzysztof Choromanski · Anna Choromanska · Michael Jordan -
2020 Poster: Budgeted Online Influence Maximization »
Pierre Perrault · Jennifer Healey · Zheng Wen · Michal Valko -
2020 Poster: Reinforcement Learning for Integer Programming: Learning to Cut »
Yunhao Tang · Shipra Agrawal · Yuri Faenza -
2020 Poster: Near-linear time Gaussian process optimization with adaptive batching and resparsification »
Daniele Calandriello · Luigi Carratino · Alessandro Lazaric · Michal Valko · Lorenzo Rosasco -
2020 Poster: Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning »
Zhaohan Guo · Bernardo Avila Pires · Bilal Piot · Jean-Bastien Grill · Florent Altché · Remi Munos · Mohammad Gheshlaghi Azar -
2020 Poster: Taylor Expansion Policy Optimization »
Yunhao Tang · Michal Valko · Remi Munos -
2019 : poster session I »
Nicholas Rhinehart · Yunhao Tang · Vinay Prabhu · Dian Ang Yap · Alexander Wang · Marc Finzi · Manoj Kumar · You Lu · Abhishek Kumar · Qi Lei · Michael Przystupa · Nicola De Cao · Polina Kirichenko · Pavel Izmailov · Andrew Wilson · Jakob Kruse · Diego Mesquita · Mario Lezcano Casado · Thomas Müller · Keir Simmons · Andrei Atanov -
2019 Poster: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2019 Oral: Statistics and Samples in Distributional Reinforcement Learning »
Mark Rowland · Robert Dadashi · Saurabh Kumar · Remi Munos · Marc Bellemare · Will Dabney -
2018 Poster: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Poster: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: The Uncertainty Bellman Equation and Exploration »
Brendan O'Donoghue · Ian Osband · Remi Munos · Vlad Mnih -
2018 Oral: Autoregressive Quantile Networks for Generative Modeling »
Georg Ostrovski · Will Dabney · Remi Munos -
2018 Oral: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Poster: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement »
Andre Barreto · Diana Borsa · John Quan · Tom Schaul · David Silver · Matteo Hessel · Daniel J. Mankowitz · Augustin Zidek · Remi Munos -
2018 Oral: Implicit Quantile Networks for Distributional Reinforcement Learning »
Will Dabney · Georg Ostrovski · David Silver · Remi Munos -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Poster: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Talk: Count-Based Exploration with Neural Density Models »
Georg Ostrovski · Marc Bellemare · Aäron van den Oord · Remi Munos -
2017 Poster: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Poster: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos -
2017 Talk: A Distributional Perspective on Reinforcement Learning »
Marc Bellemare · Will Dabney · Remi Munos -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Talk: Minimax Regret Bounds for Reinforcement Learning »
Mohammad Gheshlaghi Azar · Ian Osband · Remi Munos