Timezone: »
In many applications of AI, the algorithm’s output is framed as a suggestion to a human user. The user may ignore the advice or take it into con- sideration to modify his/her decisions. With the increasing prevalence of such human-AI interac- tions, it is important to understand how users act (or do not act) upon AI advice, and how users re- gard advice differently if they believe the advice come from an “AI” versus other human. In this paper, we characterize how humans use AI sug- gestions relative to equivalent suggestions from a group of peer humans across several experimental settings. We find that participants’ beliefs about the human versus AI performance on a given task affects whether or not they heed the advice. When participants decide the use the advice, they do so similarly for human and AI suggestions. These results provide insights into factors that affect human-AI interactions.
Author Information
Kailas Vodrahalli (Stanford University)
James Zou (Stanford University)
More from the Same Authors
-
2021 : Meaningfully Explaining a Model's Mistakes »
· Abubakar Abid · James Zou -
2021 : Meaningfully Explaining a Model's Mistakes »
Abubakar Abid · James Zou -
2021 : MetaDataset: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts »
Weixin Liang · James Zou · Weixin Liang -
2021 : Have the Cake and Eat It Too? Higher Accuracy and Less Expense when Using Multi-label ML APIs Online »
Lingjiao Chen · James Zou · Matei Zaharia -
2021 : Machine Learning API Shift Assessments: Change is Coming! »
Lingjiao Chen · James Zou · Matei Zaharia -
2022 : On the nonlinear correlation of ML performance across data subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2022 : GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language »
Zhiying Zhu · Weixin Liang · James Zou -
2022 : Evaluation of ML in Health/Science »
James Zou -
2022 : Data Sculpting: Interpretable Algorithm for End-to-End Cohort Selection »
Ruishan Liu · James Zou -
2022 : Data Budgeting for Machine Learning »
Weixin Liang · James Zou -
2022 Poster: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2022 Poster: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Poster: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Spotlight: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2021 Poster: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Spotlight: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: How to Learn when Data Reacts to Your Model: Performative Gradient Descent »
Zachary Izzo · Lexing Ying · James Zou -
2021 Spotlight: How to Learn when Data Reacts to Your Model: Performative Gradient Descent »
Zachary Izzo · Lexing Ying · James Zou -
2020 Poster: A Distributional Framework For Data Valuation »
Amirata Ghorbani · Michael Kim · James Zou -
2019 Poster: Concrete Autoencoders: Differentiable Feature Selection and Reconstruction »
Muhammed Fatih Balın · Abubakar Abid · James Zou -
2019 Poster: Discovering Conditionally Salient Features with Statistical Guarantees »
Jaime Roquero Gimenez · James Zou -
2019 Oral: Discovering Conditionally Salient Features with Statistical Guarantees »
Jaime Roquero Gimenez · James Zou -
2019 Oral: Concrete Autoencoders: Differentiable Feature Selection and Reconstruction »
Muhammed Fatih Balın · Abubakar Abid · James Zou -
2019 Poster: Data Shapley: Equitable Valuation of Data for Machine Learning »
Amirata Ghorbani · James Zou -
2019 Oral: Data Shapley: Equitable Valuation of Data for Machine Learning »
Amirata Ghorbani · James Zou -
2018 Poster: CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions »
Kevin Tian · Teng Zhang · James Zou -
2018 Oral: CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions »
Kevin Tian · Teng Zhang · James Zou