Timezone: »
We analyze a dataset of retinal images using linear probes: linear regression models trained on some target'' task, using embeddings from a deep convolutional (CNN) model trained on some
source'' task as input. We use this method across all possible pairings of 93 tasks in the UK Biobank dataset of retinal images, leading to ~164k different models. We analyze the performance of these linear probes by source and target task and by layer depth.
We observe that representations from the middle layers of the network are more generalizable. We find that some target tasks are easily predicted irrespective of the source task, and that some other target tasks are more accurately predicted from correlated source tasks than from embeddings trained on the same task.
Author Information
Katy Blumer (Google / Cornell)
Subhashini Venugopalan (Google)
Michael Brenner (Google/Harvard)
Jon Kleinberg (Cornell)
More from the Same Authors
-
2023 : Large Language Models as a Proxy For Human Evaluation in Assessing the Comprehensibility of Disordered Speech Transcription »
Katrin Tomanek · Jimmy Tobin · Subhashini Venugopalan · Richard Cave · Katie Seaver · Rus Heywood · Jordan Green -
2021 Poster: Variational Data Assimilation with a Learned Inverse Observation Operator »
Thomas Frerix · Dmitrii Kochkov · Jamie Smith · Daniel Cremers · Michael Brenner · Stephan Hoyer -
2021 Spotlight: Variational Data Assimilation with a Learned Inverse Observation Operator »
Thomas Frerix · Dmitrii Kochkov · Jamie Smith · Daniel Cremers · Michael Brenner · Stephan Hoyer -
2020 : Parallel poster session info, Closing remarks »
Subhashini Venugopalan -
2020 : Poster Session (recorded) »
Subhashini Venugopalan -
2020 : Panel Discussion »
Subhashini Venugopalan · Eun-Ah Kim · Barbara Engelhardt · Sendhil Mullainathan · Arunachalam Narayanaswamy · Katherine Bouman -
2020 : Panel Discussion - setup »
Subhashini Venugopalan -
2020 : Invited Talk - Katie Bouman »
Katherine Bouman · Subhashini Venugopalan -
2020 : Break - Poster videos (recorded) »
Subhashini Venugopalan -
2020 : Q&A - Arun Narayanaswamy »
Subhashini Venugopalan -
2020 : Invited Talk - Arun Narayanaswamy, ML Driven Scientific Discovery (recorded) »
Arunachalam Narayanaswamy · Subhashini Venugopalan -
2020 : Q&A - Sendhil Mullainathan »
Sendhil Mullainathan · Subhashini Venugopalan -
2020 : Invited Talk - Sendhil Mullainathan, Machine Learning for Scientific Discovery (recorded) »
Sendhil Mullainathan · Subhashini Venugopalan -
2020 : Q&A - Barbara Engelhardt »
Barbara Engelhardt · Subhashini Venugopalan -
2020 : Invited Talk - Barbara Engelhardt »
Barbara Engelhardt · Subhashini Venugopalan -
2020 : Invited Talk - Eun-Ah Kim »
Eun-Ah Kim · Subhashini Venugopalan -
2020 Workshop: ML Interpretability for Scientific Discovery »
Subhashini Venugopalan · Michael Brenner · Scott Linderman · Been Kim -
2020 : Welcome Note »
Subhashini Venugopalan