Timezone: »
Recently, the ever-growing demand for privacy-oriented machine learning has motivated researchers to develop federated and decentralized learning techniques, allowing individual clients to train models collaboratively without disclosing their private datasets. However, widespread adoption has been limited in domains relying on high levels of user trust, where assessment of data compatibility is essential. In this work, we define and address low interoperability induced by underlying client data inconsistencies in federated learning for tabular data. The proposed method, iFedAvg, builds on federated averaging adding local element-wise affine layers to allow for a personalized and granular understanding of the collaborative learning process. Thus, enabling the detection of outlier datasets in the federation and also learning the compensation for local data distribution shifts without sharing any original data. We evaluate iFedAvg using several public benchmarks and a previously unstudied collection of real-world datasets from the 2014 - 2016 West African Ebola epidemic, jointly forming the largest such dataset in the world. In all evaluations, iFedAvg achieves competitive average performance with negligible overhead. It additionally shows substantial improvement on outlier clients, highlighting increased robustness to individual dataset shifts. Most importantly, our method provides valuable client-specific insights at a fine-grained level to guide interoperable federated learning.
Author Information
David Roschewitz (ETH Zürich)
Mary-Anne Hartley (EPFL)
Luca Corinzia (ETH Zurich - Information Science & Engineering Group)
Martin Jaggi (EPFL)
More from the Same Authors
-
2022 : The Gap Between Continuous and Discrete Gradient Descent »
Amirkeivan Mohtashami · Martin Jaggi · Sebastian Stich -
2023 : Layerwise Linear Mode Connectivity »
Linara Adilova · Asja Fischer · Martin Jaggi -
2023 : Landmark Attention: Random-Access Infinite Context Length for Transformers »
Amirkeivan Mohtashami · Martin Jaggi -
2023 : 🎤 Fast Causal Attention with Dynamic Sparsity »
Daniele Paliotta · Matteo Pagliardini · Martin Jaggi · François Fleuret -
2023 Oral: Second-Order Optimization with Lazy Hessians »
Nikita Doikov · El Mahdi Chayti · Martin Jaggi -
2023 Poster: Second-Order Optimization with Lazy Hessians »
Nikita Doikov · El Mahdi Chayti · Martin Jaggi -
2023 Poster: Special Properties of Gradient Descent with Large Learning Rates »
Amirkeivan Mohtashami · Martin Jaggi · Sebastian Stich -
2021 : Exact Optimization of Conformal Predictors via Incremental and Decremental Learning (Spotlight #13) »
Giovanni Cherubin · Konstantinos Chatzikokolakis · Martin Jaggi -
2021 Poster: Exact Optimization of Conformal Predictors via Incremental and Decremental Learning »
Giovanni Cherubin · Konstantinos Chatzikokolakis · Martin Jaggi -
2021 Poster: Consensus Control for Decentralized Deep Learning »
Lingjing Kong · Tao Lin · Anastasiia Koloskova · Martin Jaggi · Sebastian Stich -
2021 Poster: Quasi-global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data »
Tao Lin · Sai Praneeth Reddy Karimireddy · Sebastian Stich · Martin Jaggi -
2021 Spotlight: Exact Optimization of Conformal Predictors via Incremental and Decremental Learning »
Giovanni Cherubin · Konstantinos Chatzikokolakis · Martin Jaggi -
2021 Spotlight: Quasi-global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data »
Tao Lin · Sai Praneeth Reddy Karimireddy · Sebastian Stich · Martin Jaggi -
2021 Spotlight: Consensus Control for Decentralized Deep Learning »
Lingjing Kong · Tao Lin · Anastasiia Koloskova · Martin Jaggi · Sebastian Stich -
2021 Poster: Learning from History for Byzantine Robust Optimization »
Sai Praneeth Reddy Karimireddy · Lie He · Martin Jaggi -
2021 Spotlight: Learning from History for Byzantine Robust Optimization »
Sai Praneeth Reddy Karimireddy · Lie He · Martin Jaggi -
2020 Poster: Extrapolation for Large-batch Training in Deep Learning »
Tao Lin · Lingjing Kong · Sebastian Stich · Martin Jaggi -
2020 Poster: Optimizer Benchmarking Needs to Account for Hyperparameter Tuning »
Prabhu Teja Sivaprasad · Florian Mai · Thijs Vogels · Martin Jaggi · François Fleuret -
2020 Poster: A Unified Theory of Decentralized SGD with Changing Topology and Local Updates »
Anastasiia Koloskova · Nicolas Loizou · Sadra Boreiri · Martin Jaggi · Sebastian Stich -
2019 Poster: Overcoming Multi-model Forgetting »
Yassine Benyahia · Kaicheng Yu · Kamil Bennani-Smires · Martin Jaggi · Anthony C. Davison · Mathieu Salzmann · Claudiu Musat -
2019 Oral: Overcoming Multi-model Forgetting »
Yassine Benyahia · Kaicheng Yu · Kamil Bennani-Smires · Martin Jaggi · Anthony C. Davison · Mathieu Salzmann · Claudiu Musat -
2019 Poster: Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication »
Anastasiia Koloskova · Sebastian Stich · Martin Jaggi -
2019 Poster: Error Feedback Fixes SignSGD and other Gradient Compression Schemes »
Sai Praneeth Reddy Karimireddy · Quentin Rebjock · Sebastian Stich · Martin Jaggi -
2019 Oral: Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication »
Anastasiia Koloskova · Sebastian Stich · Martin Jaggi -
2019 Oral: Error Feedback Fixes SignSGD and other Gradient Compression Schemes »
Sai Praneeth Reddy Karimireddy · Quentin Rebjock · Sebastian Stich · Martin Jaggi -
2018 Poster: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Oral: On Matching Pursuit and Coordinate Descent »
Francesco Locatello · Anant Raj · Sai Praneeth Reddy Karimireddy · Gunnar Ratsch · Bernhard Schölkopf · Sebastian Stich · Martin Jaggi -
2018 Poster: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Oral: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2017 Poster: Approximate Steepest Coordinate Descent »
Sebastian Stich · Anant Raj · Martin Jaggi -
2017 Talk: Approximate Steepest Coordinate Descent »
Sebastian Stich · Anant Raj · Martin Jaggi