Timezone: »
In electrocardiogram (ECG) deep learning (DL), researchers traditionally use the full duration of waveforms that create redundancies in feature learning and result in inaccurate predictions with large uncertainties. In this work, we introduce a new sub-waveform representation that leverages the rhythmic pattern of ECG waveforms by aligning the heartbeats to enhance the DL predictive capabilities. As a case study, we investigate the impact of waveform representations on DL predictions for identification of left ventricular dysfunction. We provide the explanation of how the sub-waveform representation opens up a new space for feature learning and minimizing uncertainties. By developing a novel scoring system, we carefully examine the feature interpretation and the clinical relevance. We note that the proposed representation enhances predictive power by engineering only at the waveform level (data-centric) rather than changing neural network architecture (model-centric). We expect that this added control over granularity of data will improve the ECG-DL modeling for developing new AI technologies in the cardiovascular space.
Author Information
Hossein Honarvar (Hasso Plattner Institute for Digital Health at Mount Sinai)
Chirag Agarwal (Harvard University)
Sulaiman Somani (Icahn School of Medicine at Mount Sinai)
Girish Nadkarni (Mount Sinai)
Marinka Zitnik (Harvard University)
Fei Wang (Cornell University)
Benjamin Glicksberg (Icahn School of Medicine at Mount Sinai)
More from the Same Authors
-
2021 : On the Connections between Counterfactual Explanations and Adversarial Examples »
· Martin Pawelczyk · Shalmali Joshi · Chirag Agarwal · Sohini Upadhyay · Hima Lakkaraju -
2021 : Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations »
· Chirag Agarwal · Marinka Zitnik · Hima Lakkaraju -
2021 : On the Connections between Counterfactual Explanations and Adversarial Examples »
Martin Pawelczyk · Shalmali Joshi · Chirag Agarwal · Sohini Upadhyay · Hima Lakkaraju -
2021 : Interactive Visual Explanations for Deep Drug Repurposing »
Qianwen Wang · Payal Chandak · Marinka Zitnik -
2021 : Towards a Unified Framework for Fair and Stable Graph Representation Learning »
Chirag Agarwal · Hima Lakkaraju · Marinka Zitnik -
2021 : Interactive Visual Explanations for Deep Drug Repurposing »
Qianwen Wang · Payal Chandak · Marinka Zitnik -
2023 : A Survey on Knowledge Graphs for Healthcare: Resources, Application Progress, and Promise »
Hejie Cui · Jiaying Lu · Shiyu Wang · Ran Xu · Wenjing Ma · Shaojun Yu · Yue Yu · Xuan Kan · Tianfan Fu · Chen Ling · Joyce Ho · Fei Wang · Carl Yang -
2023 : Regularized Data Programming with Automated Bayesian Prior Selection »
Jacqueline Maasch · Hao Zhang · Qian Yang · Fei Wang · Volodymyr Kuleshov -
2023 Poster: Domain Adaptation for Time Series Under Feature and Label Shifts »
Huan He · Owen Queen · Teddy Koker · Consuelo Cuevas · Theodoros Tsiligkaridis · Marinka Zitnik -
2023 Poster: InfoDiffusion: Representation Learning Using Information Maximizing Diffusion Models »
Yingheng Wang · Yair Schiff · Aaron Gokaslan · Weishen Pan · Fei Wang · Chris De Sa · Volodymyr Kuleshov -
2022 Workshop: AI for Science »
Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Hanchen Wang · Connor Coley · Le Song · Linfeng Zhang · Marinka Zitnik -
2020 Workshop: Graph Representation Learning and Beyond (GRL+) »
Petar Veličković · Michael M. Bronstein · Andreea Deac · Will Hamilton · Jessica Hamrick · Milad Hashemi · Stefanie Jegelka · Jure Leskovec · Renjie Liao · Federico Monti · Yizhou Sun · Kevin Swersky · Rex (Zhitao) Ying · Marinka Zitnik