Timezone: »
We design automated supervised learning systems for data tables that not only contain numeric/categorical columns, but text fields as well. Here we assemble 15 multimodal data tables that each contain some text fields and stem from a real business application. Over this benchmark, we evaluate numerous multimodal AutoML strategies, including a standard two-stage approach where NLP is used to featurize the text such that AutoML for tabular data can then be applied. We propose various practically superior strategies based on multimodal adaptations of Transformer networks and stack ensembling of these networks with classical tabular models. Beyond performing the best in our benchmark, our proposed (fully automated) methodology manages to rank 1st place (against human data scientists) when fit to the raw tabular/text data in two MachineHack prediction competitions and 2nd place (out of 2380 teams) in Kaggle’s Mercari Price Suggestion Challenge.
Author Information
Xingjian Shi (HKUST)
Jonas Mueller (Amazon Web Services)
Nick Erickson (Amazon)
Mu Li
Alex Smola (Amazon)
More from the Same Authors
-
2021 : Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola -
2022 : Adaptive Interest for Emphatic Reinforcement Learning »
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alex Smola -
2022 : Back to the Basics: Revisiting Out-of-Distribution Detection Baselines »
Johnson Kuan · Jonas Mueller -
2023 : How to Cope with Gradual Data Drift? »
Rasool Fakoor · Jonas Mueller · Zachary Lipton · Pratik Chaudhari · Alex Smola -
2023 : Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors »
Jesse Cummings · Jonas Mueller · Elías Snorrason -
2023 : Estimating label quality and errors in semantic segmentation data via any model »
Vedang Lad · Jonas Mueller -
2023 : Detecting Errors in Numerical Data via any Regression Model »
Hang Zhou · Jonas Mueller · Mayank Kumar · Jane-Ling Wang · Jing Lei -
2023 : ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection Data »
Ulyana Tkachenko · Aditya Thyagarajan · Jonas Mueller -
2023 Poster: RLSbench: Domain Adaptation Under Relaxed Label Shift »
Saurabh Garg · Nick Erickson · University of California James Sharpnack · Alex Smola · Sivaraman Balakrishnan · Zachary Lipton -
2023 Poster: XTab: Cross-table Pretraining for Tabular Transformers »
Bingzhao Zhu · Xingjian Shi · Nick Erickson · Mu Li · George Karypis · Mahsa Shoaran -
2022 : Discussion Panel »
Percy Liang · Léon Bottou · Jayashree Kalpathy-Cramer · Alex Smola -
2022 : Model-Agnostic Label Quality Scoring to Detect Real-World Label Errors »
Jonas Mueller -
2022 Poster: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Oral: Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition »
Haotao Wang · Aston Zhang · Yi Zhu · Shuai Zheng · Mu Li · Alex Smola · Zhangyang “Atlas” Wang -
2022 Poster: Removing Batch Normalization Boosts Adversarial Training »
Haotao Wang · Aston Zhang · Shuai Zheng · Xingjian Shi · Mu Li · Zhangyang “Atlas” Wang -
2022 Spotlight: Removing Batch Normalization Boosts Adversarial Training »
Haotao Wang · Aston Zhang · Shuai Zheng · Xingjian Shi · Mu Li · Zhangyang “Atlas” Wang -
2021 : Q&A Contributed Talk »
Jonas Mueller -
2021 : Contributed Talk: Multimodal AutoML on Structured Tables with Text Fields »
Jonas Mueller -
2021 Poster: Deep Learning for Functional Data Analysis with Adaptive Basis Layers »
Junwen Yao · Jonas Mueller · Jane-Ling Wang -
2021 Spotlight: Deep Learning for Functional Data Analysis with Adaptive Basis Layers »
Junwen Yao · Jonas Mueller · Jane-Ling Wang -
2020 : Panel Discussion »
Neil Lawrence · Mihaela van der Schaar · Alex Smola · Valerio Perrone · Jack Parker-Holder · Zhengying Liu -
2020 : "AutoGluon and Distillation" by Alex Smola »
Alex Smola -
2020 : 1.2 AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data »
Jonas Mueller -
2020 Poster: Educating Text Autoencoders: Latent Representation Guidance via Denoising »
Tianxiao Shen · Jonas Mueller · Regina Barzilay · Tommi Jaakkola -
2019 Poster: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Oral: Deep Factors for Forecasting »
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski -
2019 Tutorial: A Tutorial on Attention in Deep Learning »
Alex Smola · Aston Zhang -
2018 Poster: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2018 Oral: Learning Steady-States of Iterative Algorithms over Graphs »
Hanjun Dai · Zornitsa Kozareva · Bo Dai · Alex Smola · Le Song -
2017 Poster: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Talk: Canopy --- Fast Sampling with Cover Trees »
Manzil Zaheer · Satwik Kottur · Amr Ahmed · Jose Moura · Alex Smola -
2017 Poster: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola -
2017 Talk: Latent LSTM Allocation: Joint clustering and non-linear dynamic modeling of sequence data »
Manzil Zaheer · Amr Ahmed · Alex Smola -
2017 Tutorial: Distributed Deep Learning with MxNet Gluon »
Alex Smola · Aran Khanna