Timezone: »
Differentially Private Hamiltonian Monte Carlo
Ossi Räisä · Antti Koskela · Antti Honkela
We present DP-HMC, a variant of Hamiltonian Monte Carlo (HMC) that is differentially private (DP). We use the penalty algorithm of Yildirim et al. to make the acceptance test private, and add Gaussian noise to the gradients of the target distribution to make the HMC proposal private. Our main contribution is showing that DP-HMC has the correct invariant distribution, and is ergodic. We also compare DP-HMC with the existing penalty algorithm, as well as DP-SGLD and DP-SGNHT.
Author Information
Ossi Räisä (University of Helsinki)
Antti Koskela (University of Helsinki)
Antti Honkela (University of Helsinki)
More from the Same Authors
-
2021 : Tight Accounting in the Shuffle Model of Differential Privacy »
Antti Koskela · Mikko A Heikkilä · Antti Honkela -
2021 : Gaussian Processes with Differential Privacy »
Antti Honkela -
2021 : Computing Differential Privacy Guarantees for Heterogeneous Compositions Using FFT »
Antti Koskela · Antti Honkela -
2021 Poster: Differentially Private Bayesian Inference for Generalized Linear Models »
Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela -
2021 Spotlight: Differentially Private Bayesian Inference for Generalized Linear Models »
Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela -
2017 Workshop: Private and Secure Machine Learning »
Antti Honkela · Kana Shimizu · Samuel Kaski