Timezone: »
Data deletion algorithms aim to remove the influence of deleted data points from trained models at a cheaper computational cost than fully retraining those models. However, for sequences of deletions, most prior work in the non-convex setting gives valid guarantees only for sequences that are chosen independently of the models that are published. If people choose to delete their data as a function of the published models (because they don't like what the models reveal about them, for example), then the update sequence is adaptive. In this paper, we give a general reduction from deletion guarantees against adaptive sequences to deletion guarantees against non-adaptive sequences, using differential privacy and its connection to max information. Combined with ideas from prior work which give guarantees for non-adaptive deletion sequences, this leads to extremely flexible algorithms able to handle arbitrary model classes and training methodologies, giving strong provable deletion guarantees for adaptive deletion sequences. We show in theory how prior work for non-convex models fails against adaptive deletion sequences, and use this intuition to design a practical attack against the SISA algorithm of Bourtoule et al. [2021] on CIFAR-10, MNIST, Fashion-MNIST.
Author Information
Varun Gupta (University of Pennsylvania)
Christopher Jung (University of Pennsylvania)
Seth Neel (Harvard)
PhD student at University of Pennsylvania
Aaron Roth (University of Pennsylvania)
Saeed Sharifi-Malvajerdi (University of Pennsylvania)
Chris Waites (Stanford University)
More from the Same Authors
-
2022 : Individually Fair Learning with One-Sided Feedback »
Yahav Bechavod · Aaron Roth -
2022 : Individually Fair Learning with One-Sided Feedback »
Yahav Bechavod · Aaron Roth -
2023 Poster: Characterizing Multicalibration via Property Elicitation »
Georgy Noarov · Aaron Roth -
2023 Poster: Individually Fair Learning with One-Sided Feedback »
Yahav Bechavod · Aaron Roth -
2023 Poster: Multicalibration as Boosting for Regression »
Ira Globus-Harris · Declan Harrison · Michael Kearns · Aaron Roth · Jessica Sorrell -
2023 Oral: Multicalibration as Boosting for Regression »
Ira Globus-Harris · Declan Harrison · Michael Kearns · Aaron Roth · Jessica Sorrell -
2021 : Online Multivalid Learning: Means, Moments, and Prediction Intervals (Spotlight #2) »
Christopher Jung -
2021 : Contributed Talks Session 2 »
Saeed Sharifi-Malvajerdi · Audra McMillan · Ryan McKenna -
2021 Poster: Differentially Private Query Release Through Adaptive Projection »
Sergul Aydore · William Brown · Michael Kearns · Krishnaram Kenthapadi · Luca Melis · Aaron Roth · Ankit Siva -
2021 Oral: Differentially Private Query Release Through Adaptive Projection »
Sergul Aydore · William Brown · Michael Kearns · Krishnaram Kenthapadi · Luca Melis · Aaron Roth · Ankit Siva -
2019 Poster: Differentially Private Fair Learning »
Matthew Jagielski · Michael Kearns · Jieming Mao · Alina Oprea · Aaron Roth · Saeed Sharifi-Malvajerdi · Jonathan Ullman -
2019 Oral: Differentially Private Fair Learning »
Matthew Jagielski · Michael Kearns · Jieming Mao · Alina Oprea · Aaron Roth · Saeed Sharifi-Malvajerdi · Jonathan Ullman -
2018 Poster: Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness »
Michael Kearns · Seth Neel · Aaron Roth · Steven Wu -
2018 Oral: Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness »
Michael Kearns · Seth Neel · Aaron Roth · Steven Wu -
2018 Poster: Mitigating Bias in Adaptive Data Gathering via Differential Privacy »
Seth Neel · Aaron Roth -
2018 Oral: Mitigating Bias in Adaptive Data Gathering via Differential Privacy »
Seth Neel · Aaron Roth -
2017 Poster: Meritocratic Fairness for Cross-Population Selection »
Michael Kearns · Aaron Roth · Steven Wu -
2017 Talk: Meritocratic Fairness for Cross-Population Selection »
Michael Kearns · Aaron Roth · Steven Wu -
2017 Poster: Fairness in Reinforcement Learning »
Shahin Jabbari · Matthew Joseph · Michael Kearns · Jamie Morgenstern · Aaron Roth -
2017 Talk: Fairness in Reinforcement Learning »
Shahin Jabbari · Matthew Joseph · Michael Kearns · Jamie Morgenstern · Aaron Roth