Timezone: »
We consider training models with differential privacy (DP) using mini-batch gradients. The existing state-of-the-art, Differentially Private Stochastic Gradient Descent (DP-SGD), requires \emph{privacy amplification by sampling or shuffling} to obtain the best privacy/accuracy/computation trade-offs. Unfortunately, the precise requirements on exact sampling and shuffling can be hard to obtain in important practical scenarios, particularly federated learning (FL). We design and analyze a DP variant of Follow-The-Regularized-Leader (DP-FTRL) that compares favorably (both theoretically and empirically) to amplified DP-SGD, while allowing for much more flexible data access patterns. DP-FTRL does not use any form of privacy amplification.
Author Information
Peter Kairouz (Google)
Hugh B McMahan (Google)
Shuang Song (Google)
Om Dipakbhai Thakkar (Google)
Abhradeep Guha Thakurta (Google)
Zheng Xu (Google)
More from the Same Authors
-
2021 : Neural Network-based Estimation of the MMSE »
Mario Diaz · Peter Kairouz · Lalitha Sankar -
2021 : The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 : The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection »
Shubhankar Mohapatra · Shubhankar Mohapatra · Sajin Sasy · Gautam Kamath · Xi He · Om Dipakbhai Thakkar -
2021 : On the Renyi Differential Privacy of the Shuffle Model »
Antonious Girgis · Deepesh Data · Suhas Diggavi · Ananda Theertha Suresh · Peter Kairouz -
2021 : Differentially Private Model Personalization »
Prateek Jain · J K Rush · Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 : The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space »
Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 : Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates »
Steve Chien · Prateek Jain · Walid Krichene · Steffen Rendle · Shuang Song · Abhradeep Guha Thakurta · Li Zhang -
2021 : Industrial Booth (Google) »
Zheng Xu · Peter Kairouz -
2022 : Fair Universal Representations using Adversarial Models »
Monica Welfert · Peter Kairouz · Jiachun Liao · Chong Huang · Lalitha Sankar -
2023 : Unleashing the Power of Randomization in Auditing Differentially Private ML »
Krishna Pillutla · Galen Andrew · Peter Kairouz · Hugh B McMahan · Alina Oprea · Sewoong Oh -
2023 : Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation »
Wei-Ning Chen · Dan Song · Ayfer Ozgur · Peter Kairouz -
2023 : Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Can Public Large Language Models Help Private Cross-device Federated Learning? »
Boxin Wang · Yibo J. Zhang · Yuan Cao · Bo Li · Hugh B McMahan · Sewoong Oh · Zheng Xu · Manzil Zaheer -
2023 : Panel Discussion »
Peter Kairouz · Song Han · Kamalika Chaudhuri · Florian Tramer -
2023 Workshop: Federated Learning and Analytics in Practice: Algorithms, Systems, Applications, and Opportunities »
Zheng Xu · Peter Kairouz · Bo Li · Tian Li · John Nguyen · Jianyu Wang · Shiqiang Wang · Ayfer Ozgur -
2023 Poster: Why Is Public Pretraining Necessary for Private Model Training? »
Arun Ganesh · Mahdi Haghifam · Milad Nasresfahani · Sewoong Oh · Thomas Steinke · Om Thakkar · Abhradeep Guha Thakurta · Lun Wang -
2023 Oral: Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning »
Christopher Choquette-Choo · Hugh B McMahan · J K Rush · Abhradeep Guha Thakurta -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 Poster: Multi-Task Differential Privacy Under Distribution Skew »
Walid Krichene · Prateek Jain · Shuang Song · Mukund Sundararajan · Abhradeep Guha Thakurta · Li Zhang -
2023 Poster: Private Federated Learning with Autotuned Compression »
Enayat Ullah · Christopher Choquette-Choo · Peter Kairouz · Sewoong Oh -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2023 Poster: Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning »
Christopher Choquette-Choo · Hugh B McMahan · J K Rush · Abhradeep Guha Thakurta -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Oral: The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation »
Wei-Ning Chen · Ayfer Ozgur · Peter Kairouz -
2022 Poster: Public Data-Assisted Mirror Descent for Private Model Training »
Ehsan Amid · Arun Ganesh · Rajiv Mathews · Swaroop Ramaswamy · Shuang Song · Thomas Steinke · Thomas Steinke · Vinith Suriyakumar · Om Thakkar · Abhradeep Guha Thakurta -
2022 Spotlight: Public Data-Assisted Mirror Descent for Private Model Training »
Ehsan Amid · Arun Ganesh · Rajiv Mathews · Swaroop Ramaswamy · Shuang Song · Thomas Steinke · Thomas Steinke · Vinith Suriyakumar · Om Thakkar · Abhradeep Guha Thakurta -
2021 : Industrial Panel »
Nathalie Baracaldo · Shiqiang Wang · Peter Kairouz · Zheng Xu · Kshitiz Malik · Tao Zhang -
2021 : Contributed Talks Session 1 »
Marika Swanberg · Samuel Haney · Peter Kairouz -
2021 Poster: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Poster: The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 Spotlight: The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation »
Peter Kairouz · Ziyu Liu · Thomas Steinke -
2021 Spotlight: Practical and Private (Deep) Learning Without Sampling or Shuffling »
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu -
2021 Poster: Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates »
Steve Chien · Prateek Jain · Walid Krichene · Steffen Rendle · Shuang Song · Abhradeep Guha Thakurta · Li Zhang -
2021 Oral: Private Alternating Least Squares: Practical Private Matrix Completion with Tighter Rates »
Steve Chien · Prateek Jain · Walid Krichene · Steffen Rendle · Shuang Song · Abhradeep Guha Thakurta · Li Zhang -
2020 Poster: Context Aware Local Differential Privacy »
Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun -
2018 Poster: Differentially Private Matrix Completion Revisited »
Prateek Jain · Om Dipakbhai Thakkar · Abhradeep Thakurta -
2018 Oral: Differentially Private Matrix Completion Revisited »
Prateek Jain · Om Dipakbhai Thakkar · Abhradeep Thakurta