Timezone: »
We present a method for producing unbiased parameter estimates and valid confidence sets under the constraints of differential privacy. Prior work in this area is limited in that it is tailored to calculating confidence intervals for specific statistical procedures, such as mean estimation or simple linear regression. While other recent work can produce confidence intervals for more general sets of procedures, they either yield only approximately unbiased estimates, are designed for one-dimensional outputs, or assume significant user knowledge about the data-generating distribution. In contrast, our method uses the CoinPress algorithm in tandem with the Sample-Aggregate framework to produce estimates from general high-dimensional estimators that are, with high probability, unbiased and have valid confidence sets. These theoretical guarantees hold provided that the estimator, when applied over subsets of a random partition of the original data, produces estimates following a multivariate Gaussian distribution. We also propose improvements to the existing CoinPress algorithm which we find lead to more accurate estimates in practice.
Author Information
Christian Covington (University of Waterloo)
Xi He (University of Waterloo)
James Honaker
Gautam Kamath (University of Waterloo)
More from the Same Authors
-
2021 : Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization »
Pranav Subramani · Nicholas Vadivelu · Gautam Kamath -
2021 : Remember What You Want to Forget: Algorithms for Machine Unlearning »
Ayush Sekhari · Ayush Sekhari · Jayadev Acharya · Gautam Kamath · Ananda Theertha Suresh -
2021 : Benchmarking Differentially Private Graph Algorithms »
Huiyi Ning · Sreeharsha Udayashankar · Sara Qunaibi · Karl Knopf · Xi He -
2021 : The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection »
Shubhankar Mohapatra · Shubhankar Mohapatra · Sajin Sasy · Gautam Kamath · Xi He · Om Dipakbhai Thakkar -
2021 : Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data »
Gautam Kamath · Xingtu Liu · Huanyu Zhang -
2023 Poster: Exploring the Limits of Indiscriminate Data Poisoning Attacks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 Workshop: Updatable Machine Learning »
Ayush Sekhari · Gautam Kamath · Jayadev Acharya -
2022 Workshop: Theory and Practice of Differential Privacy »
Gautam Kamath · Audra McMillan -
2022 Poster: Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data »
Gautam Kamath · Xingtu Liu · Huanyu Zhang -
2022 Oral: Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data »
Gautam Kamath · Xingtu Liu · Huanyu Zhang -
2021 Workshop: Theory and Practice of Differential Privacy »
Rachel Cummings · Gautam Kamath -
2021 : Opening Remarks »
Gautam Kamath · Rachel Cummings -
2021 Poster: PAPRIKA: Private Online False Discovery Rate Control »
Wanrong Zhang · Gautam Kamath · Rachel Cummings -
2021 Spotlight: PAPRIKA: Private Online False Discovery Rate Control »
Wanrong Zhang · Gautam Kamath · Rachel Cummings -
2020 Poster: Privately Learning Markov Random Fields »
Huanyu Zhang · Gautam Kamath · Janardhan Kulkarni · Steven Wu -
2019 Poster: Sever: A Robust Meta-Algorithm for Stochastic Optimization »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Jacob Steinhardt · Alistair Stewart -
2019 Oral: Sever: A Robust Meta-Algorithm for Stochastic Optimization »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Jacob Steinhardt · Alistair Stewart -
2018 Poster: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2018 Oral: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2017 Poster: Priv’IT: Private and Sample Efficient Identity Testing »
Bryan Cai · Constantinos Daskalakis · Gautam Kamath -
2017 Poster: Being Robust (in High Dimensions) Can Be Practical »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Ankur Moitra · Alistair Stewart -
2017 Talk: Priv’IT: Private and Sample Efficient Identity Testing »
Bryan Cai · Constantinos Daskalakis · Gautam Kamath -
2017 Talk: Being Robust (in High Dimensions) Can Be Practical »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Ankur Moitra · Alistair Stewart