Timezone: »
Differential privacy is a restriction on data processing algorithms that provides strong confidentiality guarantees for individual records in the data. However, research on proper statistical inference, that is, research on properly quantifying the uncertainty of the (noisy) sample estimate regarding the true value in the population, is currently still limited. This paper proposes and evaluates several strategies to compute valid differentially private confidence intervals for the median. Instead of computing a differentially private point estimate and deriving its uncertainty, we directly estimate the interval bounds and discuss why this approach is superior if ensuring privacy is important. We also illustrate that addressing both sources of uncertainty--the error from sampling and the error from protecting the output--simultaneously should be preferred over simpler approaches that incorporate the uncertainty in a sequential fashion. We evaluate the performance of the different algorithms under various parameter settings in extensive simulation studies and demonstrate how the findings could be applied in practical settings using data from the 1940 Decennial Census.
Author Information
Joerg Drechsler (University of Maryland, College Park)
Ira Globus-Harris (University of Pennsylvania)
Audra McMillan (Apple)
Adam Smith (Boston University)
Jayshree Sarathy (Harvard University)
More from the Same Authors
-
2021 : Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling »
Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2021 : Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression »
Jayshree Sarathy · Salil Vadhan -
2021 : Differentially Private Model Personalization »
Prateek Jain · J K Rush · Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 : The Flajolet-Martin Sketch Itself Preserves Differential Privacy: Private Counting with Minimal Space »
Adam Smith · Shuang Song · Abhradeep Guha Thakurta -
2021 : When Is Memorization of Irrelevant Training Data Necessary for High-Accuracy Learning? »
Gavin Brown · Mark Bun · Vitaly Feldman · Adam Smith · Kunal Talwar -
2021 : Differentially Private Sampling from Distributions »
Satchit Sivakumar · Marika Swanberg · Sofya Raskhodnikova · Adam Smith -
2021 : Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboradi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2023 : Differentially Private Heavy Hitters using Federated Analytics »
Karan Chadha · Junye Chen · John Duchi · Vitaly Feldman · Hanieh Hashemi · Omid Javidbakht · Audra McMillan · Kunal Talwar -
2023 Oral: Multicalibration as Boosting for Regression »
Ira Globus-Harris · Declan Harrison · Michael Kearns · Aaron Roth · Jessica Sorrell -
2023 Poster: The Price of Differential Privacy under Continual Observation »
Palak Jain · Sofya Raskhodnikova · Satchit Sivakumar · Adam Smith -
2023 Oral: The Price of Differential Privacy under Continual Observation »
Palak Jain · Sofya Raskhodnikova · Satchit Sivakumar · Adam Smith -
2023 Poster: Multicalibration as Boosting for Regression »
Ira Globus-Harris · Declan Harrison · Michael Kearns · Aaron Roth · Jessica Sorrell -
2022 Workshop: Theory and Practice of Differential Privacy »
Gautam Kamath · Audra McMillan -
2021 : Contributed Talks Session 2 »
Saeed Sharifi-Malvajerdi · Audra McMillan · Ryan McKenna