Timezone: »
Remember What You Want to Forget: Algorithms for Machine Unlearning
Ayush Sekhari · Ayush Sekhari · Jayadev Acharya · Gautam Kamath · Ananda Theertha Suresh
We study the problem of unlearning datapoints from a learnt model. The learner first receives a dataset $S$ drawn i.i.d. from an unknown distribution, and outputs a model $w$ that performs well on unseen samples from the same distribution. However, at some point in the future, any training datapoint $z \in S$ can request to be unlearned, thus prompting the learner to modify its output model while still ensuring the same accuracy guarantees. We initiate a rigorous study of generalization in machine unlearning, where the goal is to perform well on previously unseen datapoints. Our focus is on both computational and storage complexity.
For the setting of convex losses, we provide an unlearning algorithm that can unlearn up to $O(n/d^{1/4})$ samples, where $d$ is the problem dimension. In comparison, in general, differentially private learning (which implies unlearning) only guarantees deletion of $O(n/d^{1/2})$ samples. This demonstrates a novel separation between differential privacy and machine unlearning.
Author Information
Ayush Sekhari (Cornell University)
Ayush Sekhari (Cornell University)
Jayadev Acharya (Cornell University)
Gautam Kamath (University of Waterloo)
Ananda Theertha Suresh (Google Research)
More from the Same Authors
-
2021 : Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization »
Pranav Subramani · Nicholas Vadivelu · Gautam Kamath -
2021 : The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection »
Shubhankar Mohapatra · Shubhankar Mohapatra · Sajin Sasy · Gautam Kamath · Xi He · Om Dipakbhai Thakkar -
2021 : On the Renyi Differential Privacy of the Shuffle Model »
Antonious Girgis · Deepesh Data · Suhas Diggavi · Ananda Theertha Suresh · Peter Kairouz -
2021 : Unbiased Statistical Estimation and Valid Confidence Sets Under Differential Privacy »
Christian Covington · Xi He · James Honaker · Gautam Kamath -
2021 : Learning with User-Level Privacy »
Daniel A Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2021 : Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data »
Gautam Kamath · Xingtu Liu · Huanyu Zhang -
2023 Poster: Subset-Based Instance Optimality in Private Estimation »
Travis Dick · Alex Kulesza · Ziteng Sun · Ananda Suresh -
2023 Poster: Algorithms for bounding contribution for histogram estimation under user-level privacy »
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser -
2023 Poster: Federated Heavy Hitter Recovery under Linear Sketching »
Adria Gascon · Peter Kairouz · Ziteng Sun · Ananda Suresh -
2023 Poster: Exploring the Limits of Indiscriminate Data Poisoning Attacks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2023 Poster: Computationally Efficient PAC RL in POMDPs with Latent Determinism and Conditional Embeddings »
Masatoshi Uehara · Ayush Sekhari · Jason Lee · Nathan Kallus · Wen Sun -
2022 Workshop: Updatable Machine Learning »
Ayush Sekhari · Gautam Kamath · Jayadev Acharya -
2022 Workshop: Theory and Practice of Differential Privacy »
Gautam Kamath · Audra McMillan -
2022 Poster: Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data »
Gautam Kamath · Xingtu Liu · Huanyu Zhang -
2022 Poster: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Poster: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Spotlight: The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning »
Wei-Ning Chen · Christopher Choquette Choo · Peter Kairouz · Ananda Suresh -
2022 Oral: Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data »
Gautam Kamath · Xingtu Liu · Huanyu Zhang -
2022 Spotlight: Guarantees for Epsilon-Greedy Reinforcement Learning with Function Approximation »
Chris Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2022 Poster: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2022 Spotlight: Correlated Quantization for Distributed Mean Estimation and Optimization »
Ananda Suresh · Ziteng Sun · Jae Ro · Felix Xinnan Yu -
2021 Workshop: Theory and Practice of Differential Privacy »
Rachel Cummings · Gautam Kamath -
2021 : Opening Remarks »
Gautam Kamath · Rachel Cummings -
2021 Spotlight: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2021 Poster: PAPRIKA: Private Online False Discovery Rate Control »
Wanrong Zhang · Gautam Kamath · Rachel Cummings -
2021 Poster: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2021 Poster: Principal Bit Analysis: Autoencoding with Schur-Concave Loss »
Sourbh Bhadane · Aaron Wagner · Jayadev Acharya -
2021 Poster: A Discriminative Technique for Multiple-Source Adaptation »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang -
2021 Spotlight: Principal Bit Analysis: Autoencoding with Schur-Concave Loss »
Sourbh Bhadane · Aaron Wagner · Jayadev Acharya -
2021 Spotlight: PAPRIKA: Private Online False Discovery Rate Control »
Wanrong Zhang · Gautam Kamath · Rachel Cummings -
2021 Spotlight: Robust Testing and Estimation under Manipulation Attacks »
Jayadev Acharya · Ziteng Sun · Huanyu Zhang -
2021 Spotlight: Relative Deviation Margin Bounds »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh -
2021 Poster: Relative Deviation Margin Bounds »
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh -
2020 Poster: Privately Learning Markov Random Fields »
Huanyu Zhang · Gautam Kamath · Janardhan Kulkarni · Steven Wu -
2020 Poster: SCAFFOLD: Stochastic Controlled Averaging for Federated Learning »
Sai Praneeth Reddy Karimireddy · Satyen Kale · Mehryar Mohri · Sashank Jakkam Reddi · Sebastian Stich · Ananda Theertha Suresh -
2020 Poster: Context Aware Local Differential Privacy »
Jayadev Acharya · Kallista Bonawitz · Peter Kairouz · Daniel Ramage · Ziteng Sun -
2020 Poster: FedBoost: A Communication-Efficient Algorithm for Federated Learning »
Jenny Hamer · Mehryar Mohri · Ananda Theertha Suresh -
2019 Poster: Communication-Constrained Inference and the Role of Shared Randomness »
Jayadev Acharya · Clément Canonne · Himanshu Tyagi -
2019 Poster: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Oral: Agnostic Federated Learning »
Mehryar Mohri · Gary Sivek · Ananda Suresh -
2019 Oral: Communication-Constrained Inference and the Role of Shared Randomness »
Jayadev Acharya · Clément Canonne · Himanshu Tyagi -
2019 Poster: Sever: A Robust Meta-Algorithm for Stochastic Optimization »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Jacob Steinhardt · Alistair Stewart -
2019 Poster: Distributed Learning with Sublinear Communication »
Jayadev Acharya · Christopher De Sa · Dylan Foster · Karthik Sridharan -
2019 Oral: Sever: A Robust Meta-Algorithm for Stochastic Optimization »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Jacob Steinhardt · Alistair Stewart -
2019 Oral: Distributed Learning with Sublinear Communication »
Jayadev Acharya · Christopher De Sa · Dylan Foster · Karthik Sridharan -
2019 Poster: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2019 Oral: Communication Complexity in Locally Private Distribution Estimation and Heavy Hitters »
Jayadev Acharya · Ziteng Sun -
2018 Poster: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2018 Oral: INSPECTRE: Privately Estimating the Unseen »
Jayadev Acharya · Gautam Kamath · Ziteng Sun · Huanyu Zhang -
2017 Poster: Priv’IT: Private and Sample Efficient Identity Testing »
Bryan Cai · Constantinos Daskalakis · Gautam Kamath -
2017 Poster: Being Robust (in High Dimensions) Can Be Practical »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Ankur Moitra · Alistair Stewart -
2017 Talk: Priv’IT: Private and Sample Efficient Identity Testing »
Bryan Cai · Constantinos Daskalakis · Gautam Kamath -
2017 Talk: Being Robust (in High Dimensions) Can Be Practical »
Ilias Diakonikolas · Gautam Kamath · Daniel Kane · Jerry Li · Ankur Moitra · Alistair Stewart -
2017 Poster: Distributed Mean Estimation with Limited Communication »
Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2017 Poster: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Poster: Maximum Selection and Ranking under Noisy Comparisons »
Moein Falahatgar · Alon Orlitsky · Venkatadheeraj Pichapati · Ananda Theertha Suresh -
2017 Talk: A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions »
Jayadev Acharya · Hirakendu Das · Alon Orlitsky · Ananda Suresh -
2017 Talk: Distributed Mean Estimation with Limited Communication »
Ananda Theertha Suresh · Felix Xinnan Yu · Sanjiv Kumar · Brendan McMahan -
2017 Talk: Maximum Selection and Ranking under Noisy Comparisons »
Moein Falahatgar · Alon Orlitsky · Venkatadheeraj Pichapati · Ananda Theertha Suresh