Timezone: »
Many problems in machine learning rely on multi-task learning (MTL), in which the goal is to solve multiple related machine learning tasks simultaneously. MTL is particularly relevant for privacy-sensitive applications in areas such as healthcare, finance, and IoT computing, where sensitive data from multiple, varied sources are shared for the purpose of learning. In this work, we formalize notions of task-level privacy for MTL via joint differential privacy(JDP), a relaxation of differential privacy for mechanism design and distributed optimization. We then propose an algorithm for mean-regularized MTL, an objective commonly used for applications in personalized federated learning, subject to JDP. We analyze our objective and solver, providing certifiable guarantees on both privacy and utility. Empirically, our method allows for improved privacy/utility trade-offs relative to global baselines across common federated learning benchmarks.
Author Information
Shengyuan Hu (Carnegie Mellon University)
Steven Wu (Carnegie Mellon University)
Virginia Smith (Carnegie Mellon University)

Virginia Smith is an assistant professor in the Machine Learning Department at Carnegie Mellon University, and a courtesy faculty member in the Electrical and Computer Engineering Department. Her research interests span machine learning, optimization, and distributed systems. Prior to CMU, Virginia was a postdoc at Stanford University, received a Ph.D. in Computer Science from UC Berkeley, and obtained undergraduate degrees in Mathematics and Computer Science from the University of Virginia.
More from the Same Authors
-
2021 : Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
· Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Understanding Clipped FedAvg: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Steven Wu · Mingyi Hong -
2021 : Improved Privacy Filters and Odometers: Time-Uniform Bounds in Privacy Composition »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Scalable Algorithms for Nonlinear Causal Inference »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 : Meta-Learning Adversarial Bandits »
Nina Balcan · Keegan Harris · Mikhail Khodak · Steven Wu -
2023 Poster: Generating Private Synthetic Data with Genetic Algorithms »
Terrance Liu · Jingwu Tang · Giuseppe Vietri · Steven Wu -
2023 Poster: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Inverse Reinforcement Learning without Reinforcement Learning »
Gokul Swamy · David Wu · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 Poster: Fully-Adaptive Composition in Differential Privacy »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2023 Oral: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2022 Poster: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Oral: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Poster: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Poster: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Poster: Private Adaptive Optimization with Side information »
Tian Li · Manzil Zaheer · Sashank Jakkam Reddi · Virginia Smith -
2022 Spotlight: Private Adaptive Optimization with Side information »
Tian Li · Manzil Zaheer · Sashank Jakkam Reddi · Virginia Smith -
2022 Spotlight: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Spotlight: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2021 Poster: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Spotlight: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Poster: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Spotlight: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Poster: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 Poster: Heterogeneity for the Win: One-Shot Federated Clustering »
Don Kurian Dennis · Tian Li · Virginia Smith -
2021 Poster: Ditto: Fair and Robust Federated Learning Through Personalization »
Tian Li · Shengyuan Hu · Ahmad Beirami · Virginia Smith -
2021 Spotlight: Ditto: Fair and Robust Federated Learning Through Personalization »
Tian Li · Shengyuan Hu · Ahmad Beirami · Virginia Smith -
2021 Spotlight: Heterogeneity for the Win: One-Shot Federated Clustering »
Don Kurian Dennis · Tian Li · Virginia Smith -
2019 Poster: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2019 Oral: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re