Timezone: »
Differentially private sparse vectors with low error, optimal space, and fast access
Martin Aumüller · Christian Lebeda · Rasmus Pagh
Representing a sparse histogram, or more generally a sparse vector, is a fundamental task in differential privacy. An ideal solution would use space close to information-theoretical lower bounds, have an error distribution that depends optimally on the desired privacy level, and allow fast random access to entries in the vector. However, existing approaches have only achieved two of these three goals.
In this paper we introduce the Approximate Laplace Projection (ALP) mechanism for approximating $k$-sparse vectors. This mechanism is shown to simultaneously have information-theoretically optimal space (up to constant factors), fast access to vector entries, and error of the same magnitude as the Laplace-mechanism applied to dense vectors. A key new technique is a \emph{unary} representation of small integers, which is shown to be robust against ``randomized response'' noise. This representation is combined with hashing, in the spirit of Bloom filters, to obtain a space-efficient, differentially private representation. Our theoretical performance bounds are complemented by simulations which show that the constant factors on the main performance parameters are quite small, suggesting practicality of the technique.
Author Information
Martin Aumüller (IT University)
Christian Lebeda (IT University)
Rasmus Pagh (University of Copenhagen)
More from the Same Authors
-
2021 Poster: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha -
2021 Poster: CountSketches, Feature Hashing and the Median of Three »
Kasper Green Larsen · Rasmus Pagh · Jakub Tětek -
2021 Spotlight: CountSketches, Feature Hashing and the Median of Three »
Kasper Green Larsen · Rasmus Pagh · Jakub Tětek -
2021 Spotlight: Differentially Private Aggregation in the Shuffle Model: Almost Central Accuracy in Almost a Single Message »
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha