Timezone: »
We consider how to release personalized privacy losses using per-instance differential privacy (pDP), focusing on private empirical risk minimization over the class of generalized linear models. Standard differential privacy (DP) gives us a worst-case bound that might be orders of magnitude larger than the privacy loss to a particular individual relative to a fixed dataset. The pDP framework provides a more fine-grained analysis of the privacy guarantee to a target individual, but the per-instance privacy loss itself might be a function of sensitive data. In this paper, we analyze the per-instance privacy loss of releasing a private empirical risk minimizer learned via objective perturbation, and propose a group of methods to privately and accurately publish the pDP losses at little to no additional privacy cost.
Author Information
Rachel Redberg (UC Santa Barbara)
Yu-Xiang Wang (UC Santa Barbara)

Yu-Xiang Wang is the Eugene Aas Assistant Professor of Computer Science at UCSB. He runs the Statistical Machine Learning lab and co-founded the UCSB Center for Responsible Machine Learning. He is also visiting Amazon Web Services. Yu-Xiang’s research interests include statistical theory and methodology, differential privacy, reinforcement learning, online learning and deep learning.
More from the Same Authors
-
2021 : Optimal Accounting of Differential Privacy via Characteristic Function »
Yuqing Zhu · Jinshuo Dong · Yu-Xiang Wang -
2021 : Optimal Uniform OPE and Model-based Offline Reinforcement Learning in Time-Homogeneous, Reward-Free and Task-Agnostic Settings »
Ming Yin · Yu-Xiang Wang -
2021 : Near-Optimal Offline Reinforcement Learning via Double Variance Reduction »
Ming Yin · Yu Bai · Yu-Xiang Wang -
2022 : Optimal Dynamic Regret in LQR Control »
Dheeraj Baby · Yu-Xiang Wang -
2022 Poster: Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost »
Dan Qiao · Ming Yin · Ming Min · Yu-Xiang Wang -
2022 Spotlight: Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost »
Dan Qiao · Ming Yin · Ming Min · Yu-Xiang Wang -
2020 Poster: An end-to-end Differentially Private Latent Dirichlet Allocation Using a Spectral Algorithm »
Christopher DeCarolis · Mukul A Ram · Seyed Esmaeili · Yu-Xiang Wang · Furong Huang -
2019 Poster: Poission Subsampled R\'enyi Differential Privacy »
Yuqing Zhu · Yu-Xiang Wang -
2019 Oral: Poission Subsampled R\'enyi Differential Privacy »
Yuqing Zhu · Yu-Xiang Wang -
2018 Poster: Detecting and Correcting for Label Shift with Black Box Predictors »
Zachary Lipton · Yu-Xiang Wang · Alexander Smola -
2018 Oral: Detecting and Correcting for Label Shift with Black Box Predictors »
Zachary Lipton · Yu-Xiang Wang · Alexander Smola -
2018 Poster: Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising »
Borja de Balle Pigem · Yu-Xiang Wang -
2018 Oral: Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising »
Borja de Balle Pigem · Yu-Xiang Wang -
2018 Poster: signSGD: Compressed Optimisation for Non-Convex Problems »
Jeremy Bernstein · Yu-Xiang Wang · Kamyar Azizzadenesheli · Anima Anandkumar -
2018 Oral: signSGD: Compressed Optimisation for Non-Convex Problems »
Jeremy Bernstein · Yu-Xiang Wang · Kamyar Azizzadenesheli · Anima Anandkumar -
2017 Poster: Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang · Alekh Agarwal · Miroslav Dudik -
2017 Talk: Optimal and Adaptive Off-policy Evaluation in Contextual Bandits »
Yu-Xiang Wang · Alekh Agarwal · Miroslav Dudik