Timezone: »

Out-of-Distribution Robustness in Deep Learning Compression
Eric Lei · Hamed Hassani

In recent years, deep neural network (DNN) compression systems have proved to be highly effective for designing source codes for many natural sources. However, like many other machine learning systems, these compressors suffer from vulnerabilities to distribution shifts as well as out-of-distribution (OOD) data, which reduces their real-world applications. In this paper, we initiate the study of OOD robust compression. Considering robustness to distributions within a Wasserstein ball around a base distribution, we propose algorithmic and architectural frameworks built on two principled methods: one that trains DNN compressors using distributionally-robust optimization (DRO), and the other which uses a structured latent code. Our results demonstrate that both methods enforce robustness compared to a standard DNN compressor, and that using a structured code can be superior to the DRO compressor. We observe tradeoffs between robustness and distortion and corroborate these findings theoretically for a specific class of sources.

Author Information

Eric Lei (Upenn)
Hamed Hassani (University of Pennsylvania)
Hamed Hassani

I am an assistant professor in the Department of Electrical and Systems Engineering (as of July 2017). I hold a secondary appointment in the Department of Computer and Information Systems. I am also a faculty affiliate of the Warren Center for Network and Data Sciences. Before joining Penn, I was a research fellow at the Simons Institute, UC Berkeley (program: Foundations of Machine Learning). Prior to that, I was a post-doctoral scholar and lecturer in the Institute for Machine Learning at ETH Z├╝rich. I received my Ph.D. degree in Computer and Communication Sciences from EPFL.

More from the Same Authors