Timezone: »
In recent years, deep neural network (DNN) compression systems have proved to be highly effective for designing source codes for many natural sources. However, like many other machine learning systems, these compressors suffer from vulnerabilities to distribution shifts as well as out-of-distribution (OOD) data, which reduces their real-world applications. In this paper, we initiate the study of OOD robust compression. Considering robustness to distributions within a Wasserstein ball around a base distribution, we propose algorithmic and architectural frameworks built on two principled methods: one that trains DNN compressors using distributionally-robust optimization (DRO), and the other which uses a structured latent code. Our results demonstrate that both methods enforce robustness compared to a standard DNN compressor, and that using a structured code can be superior to the DRO compressor. We observe tradeoffs between robustness and distortion and corroborate these findings theoretically for a specific class of sources.
Author Information
Eric Lei (Upenn)
Hamed Hassani (University of Pennsylvania)

I am an assistant professor in the Department of Electrical and Systems Engineering (as of July 2017). I hold a secondary appointment in the Department of Computer and Information Systems. I am also a faculty affiliate of the Warren Center for Network and Data Sciences. Before joining Penn, I was a research fellow at the Simons Institute, UC Berkeley (program: Foundations of Machine Learning). Prior to that, I was a post-doctoral scholar and lecturer in the Institute for Machine Learning at ETH Zürich. I received my Ph.D. degree in Computer and Communication Sciences from EPFL.
More from the Same Authors
-
2021 : Minimax Optimization: The Case of Convex-Submodular »
Arman Adibi · Aryan Mokhtari · Hamed Hassani -
2022 : Toward Certified Robustness Against Real-World Distribution Shifts »
Haoze Wu · TERUHIRO TAGOMORI · Alex Robey · Fengjun Yang · Nikolai Matni · George J. Pappas · Hamed Hassani · Corina Pasareanu · Clark Barrett -
2023 : Text + Sketch: Image Compression at Ultra Low Rates »
Eric Lei · Yigit Berkay Uslu · Hamed Hassani · Shirin Bidokhti -
2023 : Adversarial Training Should Be Cast as a Non-Zero-Sum Game »
Alex Robey · Fabian Latorre · George J. Pappas · Hamed Hassani · Volkan Cevher -
2023 Poster: Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods »
Aleksandr Shevchenko · Kevin Kögler · Hamed Hassani · Marco Mondelli -
2023 Oral: Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods »
Aleksandr Shevchenko · Kevin Kögler · Hamed Hassani · Marco Mondelli -
2023 Poster: Demystifying Disagreement-on-the-Line in High Dimensions »
Donghwan Lee · Behrad Moniri · Xinmeng Huang · Edgar Dobriban · Hamed Hassani -
2022 Poster: Probabilistically Robust Learning: Balancing Average- and Worst-case Performance »
Alex Robey · Luiz F. O. Chamon · George J. Pappas · Hamed Hassani -
2022 Spotlight: Probabilistically Robust Learning: Balancing Average- and Worst-case Performance »
Alex Robey · Luiz F. O. Chamon · George J. Pappas · Hamed Hassani -
2021 : Minimax Optimization: The Case of Convex-Submodular »
Hamed Hassani · Aryan Mokhtari · Arman Adibi -
2021 : Contributed Talk #1 »
Eric Lei · Hamed Hassani · Shirin Bidokhti -
2021 Poster: Exploiting Shared Representations for Personalized Federated Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2021 Spotlight: Exploiting Shared Representations for Personalized Federated Learning »
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai -
2020 Poster: Quantized Decentralized Stochastic Learning over Directed Graphs »
Hossein Taheri · Aryan Mokhtari · Hamed Hassani · Ramtin Pedarsani -
2020 Tutorial: Submodular Optimization: From Discrete to Continuous and Back »
Hamed Hassani · Amin Karbasi -
2019 Poster: Hessian Aided Policy Gradient »
Zebang Shen · Alejandro Ribeiro · Hamed Hassani · Hui Qian · Chao Mi -
2019 Oral: Hessian Aided Policy Gradient »
Zebang Shen · Alejandro Ribeiro · Hamed Hassani · Hui Qian · Chao Mi -
2019 Poster: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi -
2019 Oral: Entropic GANs meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs »
Yogesh Balaji · Hamed Hassani · Rama Chellappa · Soheil Feizi -
2018 Poster: Decentralized Submodular Maximization: Bridging Discrete and Continuous Settings »
Aryan Mokhtari · Hamed Hassani · Amin Karbasi -
2018 Oral: Decentralized Submodular Maximization: Bridging Discrete and Continuous Settings »
Aryan Mokhtari · Hamed Hassani · Amin Karbasi