Timezone: »
In this work, we investigate the expressiveness of the ``conditional mutual information'' (CMI) framework of Steinke and Zakynthinou (2020) and the prospect of using it to provide a unified framework for proving generalization bounds, with a focus on the realizable setting. We first demonstrate that one can use this framework to express non-trivial (but sub-optimal) bounds for any learning algorithm that outputs hypotheses from a class of bounded VC dimension. Then, we prove that the CMI framework yields the optimal bound on the expected risk of Support Vector Machines (SVMs) for learning halfspaces. This result is an application of our general result showing that stable compression schemes Bousquetet al. (2020) of size k have uniformly bounded CMI of order O(k). We further show that an inherent limitation of proper learning of VC classes contradicts the existence of a proper learner with constant CMI, and it implies a negative resolution to an open problem of Steinke and Zakynthinou (2020). We further study the CMI of empirical risk minimizers (ERMs) of class H and show that it is possible to output all consistent classifiers (version space) with bounded CMI if and only if H has a bounded star number (Hanneke and Yang (2015)).
Author Information
Mahdi Haghifam (University of Toronto)
Gintare Karolina Dziugaite (Element AI)
Shay Moran (-)
More from the Same Authors
-
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2022 : Pre-Training on a Data Diet: Identifying Sufficient Examples for Early Training »
Mansheej Paul · Brett Larsen · Surya Ganguli · Jonathan Frankle · Gintare Karolina Dziugaite -
2023 : Flat minima can fail to transfer to downstream tasks »
Deepansha Singh · Ekansh Sharma · Daniel Roy · Gintare Karolina Dziugaite -
2023 : Invited talk: Lessons Learned from Studying PAC-Bayes and Generalization »
Gintare Karolina Dziugaite -
2023 Poster: Why Is Public Pretraining Necessary for Private Model Training? »
Arun Ganesh · Mahdi Haghifam · Milad Nasresfahani · Sewoong Oh · Thomas Steinke · Om Thakkar · Abhradeep Guha Thakurta · Lun Wang -
2022 : Finding Structured Winning Tickets with Early Pruning »
Udbhav Bamba · Devin Kwok · Gintare Karolina Dziugaite · David Rolnick -
2022 Poster: A Resilient Distributed Boosting Algorithm »
Yuval filmus · Idan Mehalel · Shay Moran -
2022 Spotlight: A Resilient Distributed Boosting Algorithm »
Yuval filmus · Idan Mehalel · Shay Moran -
2021 : On the Generalization Improvement from Neural Network Pruning »
Tian Jin · Gintare Karolina Dziugaite · Michael Carbin -
2020 Poster: Generalization via Derandomization »
Jeffrey Negrea · Gintare Karolina Dziugaite · Daniel Roy -
2020 Poster: Linear Mode Connectivity and the Lottery Ticket Hypothesis »
Jonathan Frankle · Gintare Karolina Dziugaite · Daniel Roy · Michael Carbin -
2018 Poster: Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors »
Gintare Karolina Dziugaite · Daniel Roy -
2018 Oral: Entropy-SGD optimizes the prior of a PAC-Bayes bound: Generalization properties of Entropy-SGD and data-dependent priors »
Gintare Karolina Dziugaite · Daniel Roy