Timezone: »
Deep neural networks generalize well despite being exceedingly overparameterized and being trained without explicit regularization. This curious phenomenon, often termed benign overfitting, has inspired extensive research activity in establishing its statistical principles. In this work, we study both max-margin SVM and min-norm interpolating classifiers. First, we leverage an idea introduced in [V. Muthukumar et al., arXiv:2005.08054, (2020)] to relate the SVM solution to the least-squares (LS) interpolating solution. Second, we derive non-asymptotic bounds on the classification error of the LS solution. Combining the two, we present sufficient conditions on the overparameterization ratio and on the signal-to-noise ratio (SNR) for benign overfitting to occur. Moreover, we investigate the role of regularization and identify precise conditions under which the interpolating estimator performs better than the regularized estimates. We corroborate our theoretical findings with numerical simulations.
Author Information
Ke Wang (University of California, Santa Barbara)
Christos Thrampoulidis (University of British Columbia)
More from the Same Authors
-
2021 : Benign Overfitting in Multiclass Classification: All Roads Lead to Interpolation »
Ke Wang · Vidya Muthukumar · Christos Thrampoulidis -
2021 : Label-Imbalanced and Group-Sensitive Classification under Overparameterization »
Ganesh Ramachandra Kini · Orestis Paraskevas · Samet Oymak · Christos Thrampoulidis -
2023 : Generalization and Stability of Interpolating Neural Networks with Minimal Width »
Hossein Taheri · Christos Thrampoulidis -
2023 : Supervised-Contrastive Loss Learns Orthogonal Frames and Batching Matters »
Ganesh Ramachandra Kini · Vala Vakilian · Tina Behnia · Jaidev Gill · Christos Thrampoulidis -
2023 : Fast Test Error Rates for Gradient-based Algorithms on Separable Data »
Puneesh Deora · Bhavya Vasudeva · Vatsal Sharan · Christos Thrampoulidis -
2023 : On the Training and Generalization Dynamics of Multi-head Attention »
Puneesh Deora · Rouzbeh Ghaderi · Hossein Taheri · Christos Thrampoulidis -
2023 Poster: On the Role of Attention in Prompt-tuning »
Samet Oymak · Ankit Singh Rawat · Mahdi Soltanolkotabi · Christos Thrampoulidis -
2022 Poster: FedNest: Federated Bilevel, Minimax, and Compositional Optimization »
Davoud Ataee Tarzanagh · Mingchen Li · Christos Thrampoulidis · Samet Oymak -
2022 Oral: FedNest: Federated Bilevel, Minimax, and Compositional Optimization »
Davoud Ataee Tarzanagh · Mingchen Li · Christos Thrampoulidis · Samet Oymak -
2021 Poster: Safe Reinforcement Learning with Linear Function Approximation »
Sanae Amani · Christos Thrampoulidis · Lin Yang -
2021 Spotlight: Safe Reinforcement Learning with Linear Function Approximation »
Sanae Amani · Christos Thrampoulidis · Lin Yang