Timezone: »
In this work, we present an analytical solution for a simple model of classification problems on structured data. Using methods from statistical physics, we obtain a precise asymptotic expression for the test errors of random feature models trained on a strong and weak features - a model of data with input data covariance built from independent blocks allowing us to tune the saliency of low-dimensional structures and their alignment with respect to the target function. Leveraging our analytical result, we explore how properties of data distributions impact generalization in the over-parametrized regime and compare results for the logistic and square loss. Our results show in particular that the logistic loss benefits more robustly from structured data than the squared loss. Numerical experiments on MNIST and CIFAR10 confirm this insight.
Author Information
Stéphane d'Ascoli (ENS / FAIR, Paris)
Marylou Gabrié (NYU / Flatiron Institute)
Levent Sagun (ENS/CEA)
Giulio Biroli (ENS)
More from the Same Authors
-
2021 : Efficient Bayesian Sampling Using Normalizing Flows to Assist Markov Chain Monte Carlo Methods »
Marylou Gabrié -
2023 : Balanced Training of Energy-Based Models with Adaptive Flow Sampling »
Louis Grenioux · Eric Moulines · Marylou Gabrié -
2023 Poster: On Sampling with Approximate Transport Maps »
Louis Grenioux · Alain Oliviero Durmus · Eric Moulines · Marylou Gabrié -
2022 Poster: Deep symbolic regression for recurrence prediction »
Stéphane d'Ascoli · Pierre-Alexandre Kamienny · Guillaume Lample · Francois Charton -
2022 Spotlight: Deep symbolic regression for recurrence prediction »
Stéphane d'Ascoli · Pierre-Alexandre Kamienny · Guillaume Lample · Francois Charton -
2022 Poster: Neural Network Pruning Denoises the Features and Makes Local Connectivity Emerge in Visual Tasks »
Franco Pellegrini · Giulio Biroli -
2022 Spotlight: Neural Network Pruning Denoises the Features and Makes Local Connectivity Emerge in Visual Tasks »
Franco Pellegrini · Giulio Biroli -
2021 Poster: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Spotlight: Align, then memorise: the dynamics of learning with feedback alignment »
Maria Refinetti · Stéphane d'Ascoli · Ruben Ohana · Sebastian Goldt -
2021 Poster: ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases »
Stéphane d'Ascoli · Hugo Touvron · Matthew Leavitt · Ari Morcos · Giulio Biroli · Levent Sagun -
2021 Spotlight: ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases »
Stéphane d'Ascoli · Hugo Touvron · Matthew Leavitt · Ari Morcos · Giulio Biroli · Levent Sagun -
2020 Poster: Double Trouble in Double Descent: Bias and Variance(s) in the Lazy Regime »
Stéphane d'Ascoli · Maria Refinetti · Giulio Biroli · Florent Krzakala -
2018 Poster: Comparing Dynamics: Deep Neural Networks versus Glassy Systems »
Marco Baity-Jesi · Levent Sagun · Mario Geiger · Stefano Spigler · Gerard Arous · Chiara Cammarota · Yann LeCun · Matthieu Wyart · Giulio Biroli -
2018 Oral: Comparing Dynamics: Deep Neural Networks versus Glassy Systems »
Marco Baity-Jesi · Levent Sagun · Mario Geiger · Stefano Spigler · Gerard Arous · Chiara Cammarota · Yann LeCun · Matthieu Wyart · Giulio Biroli