Timezone: »
From online searches to suggested videos in social media, recommendation systems are heavily relied upon to mediate access to digital information. Concerns have been raised about these systems over the potential for feedback loops that can create unintended consequences such as echo-chambers, filter bubbles and polarization in the digital space. In this paper, we measure the effect of prolonged exposure to recommendation on availability of diverse suggested content to the user. We use the definition of reachability (or user recourse) of Dean et al 2020, as the proportion of unseen items that could be recommended to the user in the future, which can be approximated using knowledge of the embedding space geometry for linear recommenders. Whereas previous work assumed a static recommender, we study the case where the recommender can change over time, either by training for longer given a fixed dataset, or dynamically updating its training online through interactions with users. We find that dynamic changes to the recommender system do indeed affect the recourse available to users.
Author Information
Dilys Dickson (African Institute of Mathematical Sciences)
Elliot Creager (University of Toronto)
More from the Same Authors
-
2021 : Online Algorithmic Recourse by Collective Action »
Elliot Creager · Richard Zemel -
2022 : Towards Environment-Invariant Representation Learning for Robust Task Transfer »
Benjamin Eyre · Richard Zemel · Elliot Creager -
2022 : MoCoDA: Model-based Counterfactual Data Augmentation »
Silviu Pitis · Elliot Creager · Ajay Mandlekar · Animesh Garg -
2023 : Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift »
Benjamin Eyre · Elliot Creager · David Madras · Vardan Papyan · Richard Zemel -
2021 Poster: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Spotlight: Environment Inference for Invariant Learning »
Elliot Creager · Joern-Henrik Jacobsen · Richard Zemel -
2021 Oral: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2020 Poster: Causal Modeling for Fairness In Dynamical Systems »
Elliot Creager · David Madras · Toniann Pitassi · Richard Zemel -
2020 Poster: Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach »
Martin Mladenov · Elliot Creager · Omer Ben-Porat · Kevin Swersky · Richard Zemel · Craig Boutilier -
2019 Poster: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2019 Oral: Flexibly Fair Representation Learning by Disentanglement »
Elliot Creager · David Madras · Joern-Henrik Jacobsen · Marissa Weis · Kevin Swersky · Toniann Pitassi · Richard Zemel -
2018 Poster: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel -
2018 Oral: Learning Adversarially Fair and Transferable Representations »
David Madras · Elliot Creager · Toniann Pitassi · Richard Zemel