Timezone: »
Adversarial Semantic Contour for Object Detection
Yichi Zhang · Zijian Zhu · Xiao Yang · Jun Zhu
Modern object detectors are vulnerable to adversarial examples, which brings potential risks to numerous applications, e.g., self-driving car. Among attacks regularized by $\ell_p$ norm, $\ell_0$-attack aims to modify as few pixels as possible. Nevertheless, the problem is nontrivial since it generally requires to optimize the shape along with the texture simultaneously, which is an NP-hard problem. To address this issue, we propose a novel method of Adversarial Semantic Contour (ASC) guided by object contour as prior. With this prior, we reduce the searching space to accelerate the $\ell_0$ optimization, and also introduce more semantic information which should affect the detectors more. Based on the contour, we optimize the selection of modified pixels via sampling and their colors with gradient descent alternately. Extensive experiments demonstrate that our proposed ASC outperforms the most commonly manually designed patterns (e.g., square patches and grids) on task of disappearing. By modifying no more than 5\% and 3.5\% of the object area respectively, our proposed ASC can successfully mislead the mainstream object detectors including the SSD512, Yolov4, Mask RCNN, Faster RCNN, etc.
Author Information
Yichi Zhang (Tsinghua University, Tsinghua University)
Zijian Zhu (Shanghai Jiao Tong University, Tsinghua University)
Xiao Yang (Tsinghua University, Tsinghua University)
Jun Zhu (Tsinghua University)
More from the Same Authors
-
2021 : Towards Safe Reinforcement Learning via Constraining Conditional Value at Risk »
Chengyang Ying · Xinning Zhou · Dong Yan · Jun Zhu -
2021 : Boosting Transferability of Targeted Adversarial Examples via Hierarchical Generative Networks »
Xiao Yang · Yinpeng Dong · Tianyu Pang -
2021 : Strategically-timed State-Observation Attacks on Deep Reinforcement Learning Agents »
Xinning Zhou · You Qiaoben · Chengyang Ying · Jun Zhu -
2021 : Query-based Adversarial Attacks on Graph with Fake Nodes »
Zhengyi Wang · Zhongkai Hao · Jun Zhu -
2023 Poster: MultiAdam: Parameter-wise Scale-invariant Optimizer for Multiscale Training of Physics-informed Neural Networks »
Jiachen Yao · Chang Su · Zhongkai Hao · LIU SONGMING · Hang Su · Jun Zhu -
2023 Poster: Contrastive Energy Prediction for Exact Energy-Guided Diffusion Sampling in Offline Reinforcement Learning »
Cheng Lu · Huayu Chen · Jianfei Chen · Hang Su · Chongxuan Li · Jun Zhu -
2023 Poster: Stabilizing GANs' Training with Brownian Motion Controller »
Tianjiao Luo · Ziyu Zhu · Jianfei Chen · Jun Zhu -
2023 Poster: Revisiting Discriminative vs. Generative Classifiers: Theory and Implications »
Chenyu Zheng · Guoqiang Wu · Fan Bao · Yue Cao · Chongxuan Li · Jun Zhu -
2023 Poster: NUNO: A General Framework for Learning Parametric PDEs with Non-Uniform Data »
LIU SONGMING · Zhongkai Hao · Chengyang Ying · Hang Su · Ze Cheng · Jun Zhu -
2023 Poster: Improved Techniques for Maximum Likelihood Estimation for Diffusion ODEs »
Kaiwen Zheng · Cheng Lu · Jianfei Chen · Jun Zhu -
2023 Poster: One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale »
Fan Bao · Shen Nie · Kaiwen Xue · Chongxuan Li · Shi Pu · Yaole Wang · Gang Yue · Yue Cao · Hang Su · Jun Zhu -
2023 Poster: GNOT: A General Neural Operator Transformer for Operator Learning »
Zhongkai Hao · Zhengyi Wang · Hang Su · Chengyang Ying · Yinpeng Dong · LIU SONGMING · Ze Cheng · Jian Song · Jun Zhu -
2022 Poster: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Spotlight: NeuralEF: Deconstructing Kernels by Deep Neural Networks »
Zhijie Deng · Jiaxin Shi · Jun Zhu -
2022 Poster: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Fast Lossless Neural Compression with Integer-Only Discrete Flows »
Siyu Wang · Jianfei Chen · Chongxuan Li · Jun Zhu · Bo Zhang -
2022 Spotlight: Robustness and Accuracy Could Be Reconcilable by (Proper) Definition »
Tianyu Pang · Min Lin · Xiao Yang · Jun Zhu · Shuicheng Yan -
2022 Poster: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2022 Spotlight: Thompson Sampling for (Combinatorial) Pure Exploration »
Siwei Wang · Jun Zhu -
2021 Poster: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2021 Spotlight: Variational (Gradient) Estimate of the Score Function in Energy-based Latent Variable Models »
Fan Bao · Kun Xu · Chongxuan Li · Lanqing Hong · Jun Zhu · Bo Zhang -
2020 Poster: Understanding and Stabilizing GANs' Training Dynamics Using Control Theory »
Kun Xu · Chongxuan Li · Jun Zhu · Bo Zhang -
2020 Poster: Variance Reduction and Quasi-Newton for Particle-Based Variational Inference »
Michael Zhu · Chang Liu · Jun Zhu -
2020 Poster: VFlow: More Expressive Generative Flows with Variational Data Augmentation »
Jianfei Chen · Cheng Lu · Biqi Chenli · Jun Zhu · Tian Tian -
2020 Poster: Nonparametric Score Estimators »
Yuhao Zhou · Jiaxin Shi · Jun Zhu -
2019 Poster: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2019 Oral: Improving Adversarial Robustness via Promoting Ensemble Diversity »
Tianyu Pang · Kun Xu · Chao Du · Ning Chen · Jun Zhu -
2018 Poster: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Poster: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Oral: Message Passing Stein Variational Gradient Descent »
Jingwei Zhuo · Chang Liu · Jiaxin Shi · Jun Zhu · Ning Chen · Bo Zhang -
2018 Oral: Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors »
Yichi Zhou · Jun Zhu · Jingwei Zhuo -
2018 Poster: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Poster: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Oral: Max-Mahalanobis Linear Discriminant Analysis Networks »
Tianyu Pang · Chao Du · Jun Zhu -
2018 Oral: Adversarial Attack on Graph Structured Data »
Hanjun Dai · Hui Li · Tian Tian · Xin Huang · Lin Wang · Jun Zhu · Le Song -
2018 Poster: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2018 Poster: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: A Spectral Approach to Gradient Estimation for Implicit Distributions »
Jiaxin Shi · Shengyang Sun · Jun Zhu -
2018 Oral: Stochastic Training of Graph Convolutional Networks with Variance Reduction »
Jianfei Chen · Jun Zhu · Le Song -
2017 Poster: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu -
2017 Talk: Identify the Nash Equilibrium in Static Games with Random Payoffs »
Yichi Zhou · Jialian Li · Jun Zhu