Timezone: »
Author Information
Maura Pintor (University of Cagliari)
Maura Pintor is a Postdoctoral Researcher at the PRA Lab, in the Department of Electrical and Electronic Engineering of the University of Cagliari, Italy. She received the MSc degree in Telecommunications Engineering with honors in 2018 and the PhD degree in Electronic and Computer Engineering from the University of Cagliari in 2022. Her PhD thesis, "Towards Debugging and Improving Adversarial Robustness Evaluations", provides a framework for optimizing and debugging adversarial attacks. She is co-author of the paper "Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks", accepted at USENIX Sec. 2019, and of the paper "Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints", accepted at NeurIPS 2021. She was a visiting student at Eberhard Karls Universitaet Tuebingen from March to June 2020. She has collaborated with Pluribus One in the EU H2020 projects ALOHA and AssureMOSS.
Fabio Roli (University of Cagliari)
Wieland Brendel (University of Tübingen)
Battista Biggio (University of Cagliari, Italy)
More from the Same Authors
-
2021 : How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
· Roland S. Zimmermann · Judith Borowski · Robert Geirhos · Matthias Bethge · Thomas SA Wallis · Wieland Brendel -
2021 : Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples »
Maura Pintor · Luca Demetrio · Angelo Sotgiu · Giovanni Manca · Ambra Demontis · Nicholas Carlini · Battista Biggio · Fabio Roli -
2021 : Adversarial EXEmples: Functionality-preserving Optimization of Adversarial Windows Malware »
Luca Demetrio · Battista Biggio · Giovanni Lagorio · Alessandro Armando · Fabio Roli · Luca Demetrio -
2022 : ``Why do so?'' --- A practical perspective on adversarial machine learning »
Kathrin Grosse · Lukas Bieringer · Tarek R. Besold · Battista Biggio · Katharina Krombholz -
2022 : ImageNet-D: A new challenging robustness dataset inspired by domain adaptation »
Evgenia Rusak · Steffen Schneider · Peter V Gehler · Oliver Bringmann · Wieland Brendel · Matthias Bethge -
2022 : ImageNet-Patch: A Dataset for Benchmarking Machine Learning Robustness against Adversarial Patches »
Maura Pintor · Daniele Angioni · Angelo Sotgiu · Luca Demetrio · Ambra Demontis · Battista Biggio · Fabio Roli -
2022 : Contributed Talk 3: ImageNet-Patch: A Dataset for Benchmarking Machine Learning Robustness against Adversarial Patches »
Maura Pintor · Daniele Angioni · Angelo Sotgiu · Luca Demetrio · Ambra Demontis · Battista Biggio · Fabio Roli -
2022 : ImageNet-D: A new challenging robustness dataset inspired by domain adaptation »
Evgenia Rusak · Steffen Schneider · Peter V Gehler · Oliver Bringmann · Wieland Brendel · Matthias Bethge -
2021 : Contributed Talk #3 »
Maura Pintor -
2021 Poster: Contrastive Learning Inverts the Data Generating Process »
Roland S. Zimmermann · Yash Sharma · Steffen Schneider · Matthias Bethge · Wieland Brendel -
2021 Spotlight: Contrastive Learning Inverts the Data Generating Process »
Roland S. Zimmermann · Yash Sharma · Steffen Schneider · Matthias Bethge · Wieland Brendel