Timezone: »

 
Attacking Few-Shot Classifiers with Adversarial Support Poisoning
Elre Oldewage · John Bronskill · Richard E Turner

This paper examines the robustness of deployed few-shot meta-learning systems when they are fed an imperceptibly perturbed few-shot dataset, showing that the resulting predictions on test inputs can become worse than chance. This is achieved by developing a novel attack, Adversarial Support Poisoning or ASP, which crafts a poisoned set of examples. When even a small subset of malicious data points is inserted into the support set of a meta-learner, accuracy is significantly reduced. We evaluate the new attack on a variety of few-shot classification algorithms and scenarios, and propose a form of adversarial training that significantly improves robustness against both poisoning and evasion attacks.

Author Information

Elre Oldewage (University of Cambridge)
John Bronskill (University of Cambridge)
Richard E Turner (University of Cambridge)

Richard Turner holds a Lectureship (equivalent to US Assistant Professor) in Computer Vision and Machine Learning in the Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, UK. He is a Fellow of Christ's College Cambridge. Previously, he held an EPSRC Postdoctoral research fellowship which he spent at both the University of Cambridge and the Laboratory for Computational Vision, NYU, USA. He has a PhD degree in Computational Neuroscience and Machine Learning from the Gatsby Computational Neuroscience Unit, UCL, UK and a M.Sci. degree in Natural Sciences (specialism Physics) from the University of Cambridge, UK. His research interests include machine learning, signal processing and developing probabilistic models of perception.

More from the Same Authors