Timezone: »
Panelists: George Konidaris (Brown), Jan Peters (TU Darmstadt), Martin Riedmiller (Deepmind), Angela Schoellig (U. of Toronto), Rose Yu (UCSD)
Chair/Moderator: Rupam Mahmood (U. of Alberta)
Author Information
George Konidaris (Brown)
Jan Peters (TU Darmstadt)
Martin Riedmiller (DeepMind)
Angela Schoellig (University of Toronto, Vector Institute)
Rose Yu (University of California, San Diego)

Dr. Rose Yu is an assistant professor at the University of California San Diego, Department of Computer Science and Engineering. She earned her Ph.D. in Computer Sciences at USC in 2017. She was subsequently a Postdoctoral Fellow at Caltech. Her research focuses on advancing machine learning techniques for large-scale spatiotemporal data analysis, with applications to sustainability, health, and physical sciences. A particular emphasis of her research is on physics-guided AI which aims to integrate first principles with data-driven models. Among her awards, she has won NSF CAREER Award, Faculty Research Award from JP Morgan, Facebook, Google, Amazon, and Adobe, Several Best Paper Awards, Best Dissertation Award at USC, and was nominated as one of the ’MIT Rising Stars in EECS’.
Rupam Mahmood (University of Alberta)
More from the Same Authors
-
2021 : Exploration via Empowerment Gain: Combining Novelty, Surprise and Learning Progress »
Philip Becker-Ehmck · Maximilian Karl · Jan Peters · Patrick van der Smagt -
2021 : Is Bang-Bang Control All You Need? »
Tim Seyde · Igor Gilitschenski · Wilko Schwarting · Bartolomeo Stellato · Martin Riedmiller · Markus Wulfmeier · Daniela Rus -
2022 : Data Augmentation vs. Equivariant Networks: A Theoretical Study of Generalizability on Dynamics Forecasting »
Rui Wang · Robin Walters · Rose Yu -
2023 Poster: Disentangled Multi-Fidelity Deep Bayesian Active Learning »
Dongxia Wu · Ruijia Niu · Matteo Chinazzi · Yian Ma · Rose Yu -
2023 Poster: Correcting discount-factor mismatch in on-policy policy gradient methods »
Fengdi Che · Gautham Vasan · Rupam Mahmood -
2023 Poster: Meta-learning Parameterized Skills »
Haotian Fu · Shangqun Yu · Saket Tiwari · Michael L. Littman · George Konidaris -
2023 Poster: Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning »
Sam Lobel · Akhil Bagaria · George Konidaris -
2023 Poster: Generative Adversarial Symmetry Discovery »
Jianke Yang · Robin Walters · Nima Dehmamy · Rose Yu -
2023 Poster: RLang: A Declarative Language for Describing Partial World Knowledge to Reinforcement Learning Agents »
Rafael A Rodriguez-Sanchez · Benjamin Spiegel · Jennifer Wang · Roma Patel · George Konidaris · Stefanie Tellex -
2023 Poster: On the Connection Between MPNN and Graph Transformer »
Chen Cai · Truong Son Hy · Rose Yu · Yusu Wang -
2023 Oral: Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning »
Sam Lobel · Akhil Bagaria · George Konidaris -
2022 Poster: Curriculum Reinforcement Learning via Constrained Optimal Transport »
Pascal Klink · Haoyi Yang · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2022 Poster: LIMO: Latent Inceptionism for Targeted Molecule Generation »
Peter Eckmann · Kunyang Sun · Bo Zhao · Mudong Feng · Michael Gilson · Rose Yu -
2022 Spotlight: Curriculum Reinforcement Learning via Constrained Optimal Transport »
Pascal Klink · Haoyi Yang · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2022 Spotlight: LIMO: Latent Inceptionism for Targeted Molecule Generation »
Peter Eckmann · Kunyang Sun · Bo Zhao · Mudong Feng · Michael Gilson · Rose Yu -
2022 Poster: Approximately Equivariant Networks for Imperfectly Symmetric Dynamics »
Rui Wang · Robin Walters · Rose Yu -
2022 Spotlight: Approximately Equivariant Networks for Imperfectly Symmetric Dynamics »
Rui Wang · Robin Walters · Rose Yu -
2021 Workshop: Reinforcement Learning for Real Life »
Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor -
2021 Poster: Value Iteration in Continuous Actions, States and Time »
Michael Lutter · Shie Mannor · Jan Peters · Dieter Fox · Animesh Garg -
2021 Poster: Data-efficient Hindsight Off-policy Option Learning »
Markus Wulfmeier · Dushyant Rao · Roland Hafner · Thomas Lampe · Abbas Abdolmaleki · Tim Hertweck · Michael Neunert · Dhruva Tirumala Bukkapatnam · Noah Siegel · Nicolas Heess · Martin Riedmiller -
2021 Spotlight: Value Iteration in Continuous Actions, States and Time »
Michael Lutter · Shie Mannor · Jan Peters · Dieter Fox · Animesh Garg -
2021 Spotlight: Data-efficient Hindsight Off-policy Option Learning »
Markus Wulfmeier · Dushyant Rao · Roland Hafner · Thomas Lampe · Abbas Abdolmaleki · Tim Hertweck · Michael Neunert · Dhruva Tirumala Bukkapatnam · Noah Siegel · Nicolas Heess · Martin Riedmiller -
2021 Poster: Convex Regularization in Monte-Carlo Tree Search »
Tuan Q Dam · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2021 Spotlight: Convex Regularization in Monte-Carlo Tree Search »
Tuan Q Dam · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2021 Poster: Skill Discovery for Exploration and Planning using Deep Skill Graphs »
Akhil Bagaria · Jason Senthil · George Konidaris -
2021 Oral: Skill Discovery for Exploration and Planning using Deep Skill Graphs »
Akhil Bagaria · Jason Senthil · George Konidaris -
2020 : "Safe and Efficient Active Learning Strategies for Robotics Applications" »
Angela Schoellig -
2020 Poster: Learning Portable Representations for High-Level Planning »
Steven James · Benjamin Rosman · George Konidaris -
2020 Poster: A distributional view on multi-objective policy optimization »
Abbas Abdolmaleki · Sandy Huang · Leonard Hasenclever · Michael Neunert · Francis Song · Martina Zambelli · Murilo Martins · Nicolas Heess · Raia Hadsell · Martin Riedmiller -
2020 Poster: Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis »
Jung Yeon Park · Kenneth Carr · Stephan Zheng · Yisong Yue · Rose Yu -
2019 Poster: Projections for Approximate Policy Iteration Algorithms »
Riad Akrour · Joni Pajarinen · Jan Peters · Gerhard Neumann -
2019 Poster: Finding Options that Minimize Planning Time »
Yuu Jinnai · David Abel · David Hershkowitz · Michael L. Littman · George Konidaris -
2019 Oral: Finding Options that Minimize Planning Time »
Yuu Jinnai · David Abel · David Hershkowitz · Michael L. Littman · George Konidaris -
2019 Oral: Projections for Approximate Policy Iteration Algorithms »
Riad Akrour · Joni Pajarinen · Jan Peters · Gerhard Neumann -
2019 Poster: Discovering Options for Exploration by Minimizing Cover Time »
Yuu Jinnai · Jee Won Park · David Abel · George Konidaris -
2019 Oral: Discovering Options for Exploration by Minimizing Cover Time »
Yuu Jinnai · Jee Won Park · David Abel · George Konidaris -
2018 Poster: PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos »
Paavo Parmas · Carl E Rasmussen · Jan Peters · Kenji Doya -
2018 Poster: Policy and Value Transfer in Lifelong Reinforcement Learning »
David Abel · Yuu Jinnai · Sophie Guo · George Konidaris · Michael L. Littman -
2018 Oral: PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos »
Paavo Parmas · Carl E Rasmussen · Jan Peters · Kenji Doya -
2018 Oral: Policy and Value Transfer in Lifelong Reinforcement Learning »
David Abel · Yuu Jinnai · Sophie Guo · George Konidaris · Michael L. Littman -
2018 Poster: Learning by Playing - Solving Sparse Reward Tasks from Scratch »
Martin Riedmiller · Roland Hafner · Thomas Lampe · Michael Neunert · Jonas Degrave · Tom Van de Wiele · Vlad Mnih · Nicolas Heess · Jost Springenberg -
2018 Poster: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia -
2018 Oral: Learning by Playing - Solving Sparse Reward Tasks from Scratch »
Martin Riedmiller · Roland Hafner · Thomas Lampe · Michael Neunert · Jonas Degrave · Tom Van de Wiele · Vlad Mnih · Nicolas Heess · Jost Springenberg -
2018 Oral: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia