Timezone: »
Towards the Unification and Robustness of Perturbation and Gradient Based Explanations
· Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju
Author Information
Sushant Agarwal (University of Waterloo)
Shahin Jabbari (Harvard University)
Chirag Agarwal (Harvard University)
Sohini Upadhyay (Harvard University)
Steven Wu (Carnegie Mellon University)
Hima Lakkaraju (Harvard)
More from the Same Authors
-
2021 : Poster Session Test »
Jie Ren · -
2021 : A Turing Test for Transparency »
· Felix Biessmann -
2021 : Dynamic Defense Approach for Adversarial Robustness in Deep Neural Networks via Stochastic Ensemble Smoothed Model »
· Ruoxi Qin -
2021 : Quality Metrics for Transparent Machine Learning With and Without Humans In the Loop Are Not Correlated »
· Felix Biessmann -
2021 : Minimum sharpness: Scale-invariant parameter-robustness of neural networks »
· Hikaru Ibayashi -
2021 : Understanding Instance-based Interpretability of Variational Auto-Encoders »
· Zhifeng Kong · Kamalika Chaudhuri -
2021 : Informative Class Activation Maps: Estimating Mutual Information Between Regions and Labels »
· Zhenyue Qin -
2021 : This Looks Like That... Does it? Shortcomings of Latent Space Prototype Interpretability in Deep Networks »
· Adrian Hoffmann · Claudio Fanconi · Rahul Rade · Jonas Kohler -
2021 : How Not to Measure Disentanglement »
· Julia Kiseleva · Maarten de Rijke -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
· Dan Ley · Umang Bhatt · Adrian Weller -
2021 : Improving the Transferability of Adversarial Examples with New Iteration Framework and Input Dropout »
· Pengfei Xie -
2021 : Interpretable Face Manipulation Detection via Feature Whitening »
· Yingying Hua · Pengju Wang · Shiming Ge -
2021 : Synthetic Benchmarks for Scientific Research in Explainable Machine Learning »
· Yang Liu · Colin White · Willie Neiswanger -
2021 : A Probabilistic Representation of DNNs: Bridging Mutual Information and Generalization »
· Xinjie Lan -
2021 : A MaxSAT Approach to Inferring Explainable Temporal Properties »
· Rajarshi Roy · Zhe Xu · Ufuk Topcu · Jean-RaphaĆ«l Gaglione -
2021 : Active Automaton Inference for Reinforcement Learning using Queries and Counterexamples »
· Aditya Ojha · Zhe Xu · Ufuk Topcu -
2021 : Learned Interpretable Residual Extragradient ISTA for Sparse Coding »
· Connie Kong · Fanhua Shang -
2021 : Neural Network Classifier as Mutual Information Evaluator »
· Zhenyue Qin -
2021 : Evaluation of Saliency-based Explainability Methods »
· Sam Zabdiel Samuel · Vidhya Kamakshi · Narayanan Chatapuram Krishnan -
2021 : Order in the Court: Explainable AI Methods Prone to Disagreement »
· Michael Neely · Stefan F. Schouten · Ana Lucic -
2021 : On the overlooked issue of defining explanation objectives for local-surrogate explainers »
· Rafael Poyiadzi · Xavier Renard · Thibault Laugel · Raul Santos-Rodriguez · Marcin Detyniecki -
2021 : How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
· Roland S. Zimmermann · Judith Borowski · Robert Geirhos · Matthias Bethge · Thomas SA Wallis · Wieland Brendel -
2021 : On the Connections between Counterfactual Explanations and Adversarial Examples »
· Martin Pawelczyk · Shalmali Joshi · Chirag Agarwal · Sohini Upadhyay · Hima Lakkaraju -
2021 : Promises and Pitfalls of Black-Box Concept Learning Models »
· Anita Mahinpei · Justin Clark · Isaac Lage · Finale Doshi-Velez · Weiwei Pan -
2021 : On the (Un-)Avoidability of Adversarial Examples »
· Ruth Urner -
2021 : Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations »
· Chirag Agarwal · Marinka Zitnik · Hima Lakkaraju -
2021 : Reliable graph neural network explanations through adversarial training »
· Donald Loveland · Bhavya Kailkhura · T. Yong-Jin Han -
2021 : Towards Fully Interpretable Deep Neural Networks: Are We There Yet? »
· Sandareka Wickramanayake -
2021 : Towards Automated Evaluation of Explanations in Graph Neural Networks »
· Balaji Ganesan · Devbrat Sharma -
2021 : A Source-Criticism Debiasing Method for GloVe Embeddings »
-
2021 : Quantitative Evaluation of Explainable Graph Neural Networks for Molecular Property prediction »
· Jiahua Rao · SHUANGJIA ZHENG -
2021 : What will it take to generate fairness-preserving explanations? »
· Jessica Dai · Sohini Upadhyay · Hima Lakkaraju -
2021 : Gradient-Based Interpretability Methods and Binarized Neural Networks »
· Amy Widdicombe -
2021 : Meaningfully Explaining a Model's Mistakes »
· Abubakar Abid · James Zou -
2021 : Feature Attributions and Counterfactual Explanations Can Be Manipulated »
· Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2021 : SalKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning »
· Aaron Chan · Xiang Ren -
2021 : Re-imagining GNN Explanations with ideas from Tabular Data »
· Anjali Singh · Shamanth Nayak K · Balaji Ganesan -
2021 : Learning Sparse Representations with Alternating Back-Propagation »
· Tian Han -
2021 : Deep Interpretable Criminal Charge Prediction Based on Temporal Trajectory »
· Jia Xu · Abdul Khan -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : On the Connections between Counterfactual Explanations and Adversarial Examples »
Martin Pawelczyk · Shalmali Joshi · Chirag Agarwal · Sohini Upadhyay · Hima Lakkaraju -
2021 : Towards Robust and Reliable Algorithmic Recourse »
Sohini Upadhyay · Shalmali Joshi · Hima Lakkaraju -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Private Multi-Task Learning: Formulation and Applications to Federated Learning »
Shengyuan Hu · Steven Wu · Virginia Smith -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Understanding Clipped FedAvg: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Steven Wu · Mingyi Hong -
2021 : Improved Privacy Filters and Odometers: Time-Uniform Bounds in Privacy Composition »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2021 : Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Towards a Unified Framework for Fair and Stable Graph Representation Learning »
Chirag Agarwal · Hima Lakkaraju · Marinka Zitnik -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 : Reliable Post hoc Explanations: Modeling Uncertainty in Explainability »
Dylan Slack · Sophie Hilgard · Sameer Singh · Hima Lakkaraju -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Scalable Algorithms for Nonlinear Causal Inference »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 : Meta-Learning Adversarial Bandits »
Nina Balcan · Keegan Harris · Mikhail Khodak · Steven Wu -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Towards Fair Knowledge Distillation using Student Feedback »
Abhinav Java · Surgan Jandial · Chirag Agarwal -
2023 : Adaptive Principal Component Regression with Applications to Panel Data »
Anish Agarwal · Keegan Harris · Justin Whitehouse · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Counterfactual Explanation Policies in RL »
Shripad Deshmukh · Srivatsan R · Supriti Vijay · Jayakumar Subramanian · Chirag Agarwal -
2023 : Fair Machine Unlearning: Data Removal while Mitigating Disparities »
Alex Oesterling · Jiaqi Ma · Flavio Calmon · Hima Lakkaraju -
2023 : Evaluating the Casual Reasoning Abilities of Large Language Models »
Isha Puri · Hima Lakkaraju -
2023 : Towards Fair Knowledge Distillation using Student Feedback »
Abhinav Java · Surgan Jandial · Chirag Agarwal -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Himabindu Lakkaraju - Regulating Explainable AI: Technical Challenges and Opportunities »
Hima Lakkaraju -
2023 : Efficient Estimation of Local Robustness of Machine Learning Models »
Tessa Han · Suraj Srinivas · Hima Lakkaraju -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 Poster: Fully-Adaptive Composition in Differential Privacy »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2023 Oral: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Inverse Reinforcement Learning without Reinforcement Learning »
Gokul Swamy · David Wu · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 Poster: Generating Private Synthetic Data with Genetic Algorithms »
Terrance Liu · Jingwu Tang · Giuseppe Vietri · Steven Wu -
2023 Tutorial: Responsible AI for Generative AI in Practice: Lessons Learned and Open Challenges »
Krishnaram Kenthapadi · Hima Lakkaraju · Nazneen Rajani -
2022 Workshop: New Frontiers in Adversarial Machine Learning »
Sijia Liu · Pin-Yu Chen · Dongxiao Zhu · Eric Wong · Kathrin Grosse · Hima Lakkaraju · Sanmi Koyejo -
2022 Poster: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Oral: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Poster: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Poster: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Spotlight: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Social: Trustworthy Machine Learning Social »
Haohan Wang · Sarah Tan · Chirag Agarwal · Chhavi Yadav · Jaydeep Borkar -
2021 Workshop: ICML Workshop on Algorithmic Recourse »
Stratis Tsirtsis · Amir-Hossein Karimi · Ana Lucic · Manuel Gomez-Rodriguez · Isabel Valera · Hima Lakkaraju -
2021 : Towards Robust and Reliable Model Explanations for Healthcare »
Hima Lakkaraju -
2021 Poster: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Spotlight: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Poster: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Spotlight: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Poster: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2020 Poster: Robust and Stable Black Box Explanations »
Hima Lakkaraju · Nino Arsov · Osbert Bastani