Timezone: »
This talk gives an overview of recent results in a line of theoretical work that started 3 decades ago in statistical physics. We will first discuss teacher-student setting of the generalized linear regression. We illustrate the presence of the interpolation peak for classification with ridge loss and its vanishing with regularization. We show that, in the spherical perceptron, the optimally regularized logistic regression approaches very closely the Bayes optimal accuracy. We contrast this with the non-convex case of phase retrieval where the canonical empirical risk minimization performs poorly compared to the Bayes-optimal error. We then move towards learning with hidden units and analyze double descent in learning with generic fixed features and any convex loss. The formulas we obtain a generic enough to describe the learning of the last layer of neural networks for realistic data and networks. Finally, for the phase retrieval, we are able to analyze gradient descent in the feature-learning regime of a two-layer neural network where we show that overparametrization allows a considerable reduction of the sample complexity. Concretely, an overparametrized neural network only needs twice the input dimension of samples, while non-overparametrized network needs constant times more, and kernel regression quadratically many samples in the input dimension.
Author Information
Lenka Zdeborova (EPFL)
More from the Same Authors
-
2023 Poster: Bayes-optimal Learning of Deep Random Networks of Extensive-width »
Hugo Cui · FLORENT KRZAKALA · Lenka Zdeborova -
2023 Oral: Bayes-optimal Learning of Deep Random Networks of Extensive-width »
Hugo Cui · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Poster: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2021 Spotlight: Classifying high-dimensional Gaussian mixtures: Where kernel methods fail and neural networks succeed »
Maria Refinetti · Sebastian Goldt · FLORENT KRZAKALA · Lenka Zdeborova -
2020 Poster: Generalisation error in learning with random features and the hidden manifold model »
Federica Gerace · Bruno Loureiro · Florent Krzakala · Marc Mezard · Lenka Zdeborova -
2020 Poster: The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture »
Francesca Mignacco · Florent Krzakala · Yue Lu · Pierfrancesco Urbani · Lenka Zdeborova -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Loss landscape and behaviour of algorithms in the spiked matrix-tensor model »
Lenka Zdeborova -
2019 Poster: Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models »
Stefano Sarao Mannelli · Florent Krzakala · Pierfrancesco Urbani · Lenka Zdeborova -
2019 Oral: Passed & Spurious: Descent Algorithms and Local Minima in Spiked Matrix-Tensor Models »
Stefano Sarao Mannelli · Florent Krzakala · Pierfrancesco Urbani · Lenka Zdeborova