Timezone: »
Machine learning models deployed in the real world constantly face distribution shifts, yet current models are not robust to these shifts; they can perform well when the train and test distributions are identical, but still have their performance plummet when evaluated on a different test distribution. In this talk, I will discuss methods and benchmarks for improving robustness to distribution shifts. First, we consider the problem of spurious correlations and show how to mitigate it with a combination of distributionally robust optimization (DRO) and controlling model complexity---e.g., through strong L2 regularization, early stopping, or underparameterization. Second, we present WILDS, a curated and diverse collection of 10 datasets with real-world distribution shifts, that aims to address the under-representation of real-world shifts in the datasets widely used in the ML community today. We observe that existing methods fail to mitigate performance drops due to these distribution shifts, underscoring the need for new training methods that produce models which are more robust to the types of distribution shifts that arise in practice.
Author Information
Shiori Sagawa (Stanford University)
More from the Same Authors
-
2023 Poster: Out-of-Domain Robustness via Targeted Augmentations »
Irena Gao · Shiori Sagawa · Pang Wei Koh · Tatsunori Hashimoto · Percy Liang -
2022 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Spotlight: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Poster: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn -
2021 Oral: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn