Timezone: »
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Existing solutions are mainly driven by small-scale natural image datasets and are far from readily usable for safety-critical domains such as medical imaging diagnosis. In this paper, we bridge this critical gap by proposing a localization-based OOD detection framework LOOD, which demonstrates substantial improvement over previous methods. Our key idea is to estimate the OOD score from a localized feature region that is highly indicative of the disease label, as opposed to averaging signals from all spatial locations. We achieve this by devising a specialized pooling mechanism termed selective pooling, which yields OOD scores that better distinguish between the in-distribution and OOD data. We evaluate the model trained on a large-scale clinical chest X-ray dataset against five diverse OOD datasets. LOOD establishes superior performance on this challenging task, reducing the average FPR95 by up to 57.83%.
Author Information
Yiyou Sun (University of Wisconsin Madison)
Sharon Li (University of Wisconsin-Madison)
More from the Same Authors
-
2022 : Are Vision Transformers Robust to Spurious Correlations ? »
Soumya Suvra Ghosal · Yifei Ming · Sharon Li -
2023 Poster: Mitigating Memorization of Noisy Labels by Clipping the Model Prediction »
Hongxin Wei · HUIPING ZHUANG · RENCHUNZI XIE · Lei Feng · Gang Niu · Bo An · Sharon Li -
2023 Poster: When and How Does Known Class Help Discover Unknown Ones? Provable Understanding Through Spectral Analysis »
Yiyou Sun · Zhenmei Shi · Yingyiu Liang · Sharon Li -
2023 Poster: Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization and Detection »
Haoyue Bai · Gregory Canal · Xuefeng Du · Jeongyeol Kwon · Robert Nowak · Sharon Li -
2022 Workshop: Workshop on Distribution-Free Uncertainty Quantification »
Anastasios Angelopoulos · Stephen Bates · Sharon Li · Ryan Tibshirani · Aaditya Ramdas · Stephen Bates -
2022 : Challenges and Opportunities in Handling Data Distributional Shift »
Sharon Li -
2022 Poster: Out-of-Distribution Detection with Deep Nearest Neighbors »
Yiyou Sun · Yifei Ming · Jerry Zhu · Sharon Li -
2022 Poster: Training OOD Detectors in their Natural Habitats »
Julian Katz-Samuels · Julia Nakhleh · Robert Nowak · Sharon Li -
2022 Poster: Mitigating Neural Network Overconfidence with Logit Normalization »
Hongxin Wei · RENCHUNZI XIE · Hao Cheng · LEI FENG · Bo An · Sharon Li -
2022 Spotlight: Training OOD Detectors in their Natural Habitats »
Julian Katz-Samuels · Julia Nakhleh · Robert Nowak · Sharon Li -
2022 Spotlight: Out-of-Distribution Detection with Deep Nearest Neighbors »
Yiyou Sun · Yifei Ming · Jerry Zhu · Sharon Li -
2022 Spotlight: Mitigating Neural Network Overconfidence with Logit Normalization »
Hongxin Wei · RENCHUNZI XIE · Hao Cheng · LEI FENG · Bo An · Sharon Li -
2022 Poster: POEM: Out-of-Distribution Detection with Posterior Sampling »
Yifei Ming · Ying Fan · Sharon Li -
2022 Oral: POEM: Out-of-Distribution Detection with Posterior Sampling »
Yifei Ming · Ying Fan · Sharon Li -
2021 Workshop: Workshop on Distribution-Free Uncertainty Quantification »
Anastasios Angelopoulos · Stephen Bates · Sharon Li · Aaditya Ramdas · Ryan Tibshirani -
2021 Workshop: Uncertainty and Robustness in Deep Learning »
Balaji Lakshminarayanan · Dan Hendrycks · Sharon Li · Jasper Snoek · Silvia Chiappa · Sebastian Nowozin · Thomas Dietterich